Чему равна плотность дерева


Таблица плотности дерева (кг/м3): сосна, липа, осина

Крайне нестабильной является величина, определяющая плотность дерева. Она может измеряться в широком диапазоне даже для одного сорта или состава древесины в зависимости от определенных факторов. Обычно, когда указывается объемный вес древесины, то подразумеваются обобщенные цифры. Нередко эмпирический результат способен отличаться от справочных данных.

Базовые понятия

В физике есть понятие, при котором удельный вес древесины рассчитывается с пустотами и без них, как для объемного цельного физического объекта. Вещество, входящее в состав дерева, практически не зависит от разных пород. Справочники используют расчетное значение 1,54 г/см3. Таким образом в 1 м3 плотно сжатого вещества без оставления пустот будет 1540 кг материала.

Плотность дерева определяется по формуле, известной еще со школьного курса физики

Если определять плотность дерева с учетом пористости, то здесь помогает знание удельного веса. На условный объем в данном случае не оказывает влияние коэффициент усушки, и он не нуждается в перерасчете с включением влажности 10-17%. Подход помогает не усложнять расчет, а получать цельный результат во время сверки нескольких разных образцов.

Классификатор пород

Необходимо знать, что плотности древесины различных пород значительно разнятся между собой по значениям.

Традиционно принято делить заготовляемые объемы на три условных группы по плотности:

Ангарская сосна хотя и считается эталонной по твердости, на самом деле относится к неплотным породам древесины

Показатель удельной плотности березы повислой относится к средней группе

Изготовленные из дуба мебель, напольные покрытия выдерживают многолетнюю эксплуатацию

Для справки стоит знать, что популярная таблица плотности древесины различных регионов включает такие экзотические материалы как бальса, которая обладает весьма уникальным значением в 0,15 г/см3. Это в 4 раза меньше сопоставимого объема высушенной березы. Если сравнивать с елью, которая 2,5 раза тяжелее, то структура экваториальной экзотики также выигрывает.

Противоположными характеристиками обладает бакаут. Кубометр такого материала отклонит стрелку весов на 1,3 т. Медленнорастущее дерево произрастает на Кубе, Гаити, Гондурасе. Материал достаточно трудно обрабатывается за счет имеющейся в структуре смолы. Из него делают кегли, шары для боулинга и даже подшипники.

ВИДЕО: Характеристики основных лиственных и хвойных пород древесины

Взаимосвязь фактуры со свойствами

Доказано, что плотность древесины зависит от того, сколько внутри ее структуры сохраняется жидкости. В первую очередь вода повышает массу выбранного объема, а во вторую очередь она стимулирует набухание клеточных стенок, что приводит к расширению объема. Это приводит к тому, что средняя плотность древесины определяется при полном отсутствии жидкости или при определенном ее процентном содержании.

Найти значение у максимально высушенных заготовок вряд ли удастся, так как они будут при любом удобном случае поглощать влагу из атмосферы. В классическом варианте замеры осуществляются при достижении определенного равновесного состояния.

Физические расчеты иногда включают базовое значение. Оно является отношением массы полностью сухой заготовки к возможно максимальному объему в набухающем состоянии. Последнее характерно для заготовок, только что спиленных, в которых буквально недавно происходило сокодвижение, или длительное время находившихся в воде заготовках.

Плотность, пористость и проницаемость древесины

На значение оказывает влияние среда произрастания. В отечественных широтах встречаются чаще всего растения, значение плотности сухой древесины у которых варьируется в пределах 350-920 кг/куб.м. Например, плотность сосны, как и плотность осины,попадает в среднюю часть интервала, так как составляет около 500 единиц. Если брать плотность дуба, то она ближе к верхнему порогу в зависимости от степени насыщенности влагой составляет 700-750 кг/куб.м.

Структура дерева зависит от проницаемости жидкостями и газами под давлением. Эта особенность оказывается под влиянием системы сообщающихся клеточных полостей. Сухая клеточная стенка обладает низкой пористостью. Ее составляющие обычно находятся в стеклообразном состоянии.

Характеристика популярных сортов древесины

Таблица плотности популярных сортов древесины

Помимо сухой статистики, приведем краткое описание некоторых пород дерева для понимания природы определения плотности.

Лиственница

Лиственница

Заготовки из этого материала достаточно прочные и долговечные. По своей твердости она сопоставима с дубом. Коробление в малой степени оказывает влияние на лиственницу, поэтому ее нередко используют в качестве строительного и отделочного материала.

Кедр

Кедр

Все сорта кедровых деревьев обладают схожей по цвету древесиной. В ее структуре присутствует большое количество масел и смол, которые придают заготовкам характерный приятный запах. В срезе явно заметны годичные кольца, так как присутствует заметный контраст в зонах ранней и поздней древесине. Традиционно волокна располагаются прямо, а характерной чертой образования рисунка является наличие кармашков врастания коры.

Мореный дуб

Мореный дуб

Это много лет назад затонувшие леса, которые без доступа кислорода упрочнились на дне водохранилищ. Отличается неповторимой цветовой гаммой и долговечностью при эксплуатации.

Осина

Осина

Мягкая, но одновременно плотная фактура отлично обрабатывается металлическим инструментом. Благодаря такой податливости она легко распиливается, фрезеруется, лущится. Также легко склеить отдельные элементы между собой. Недостаток материала в том, что он трудно полируется.

Липа

Липа

Светлая на продольном и поперечном срезе древесина имеет легкий коричневатый или красноватый оттенок. Хорошо обрабатывается. Редкими считаются заготовки с зеленоватым тоном.

Ольха

Ольха

Свежесрезанная заготовка быстро темнеет, приобретая желтоватый или оранжевый цвет. После обработки олифой или маслом получается равномерный тон, отличающий ее от остальных пород. Доска содержит сердцевинные повторения как черточки.

ВИДЕО: Как учитывать свойства древесины в изделиях

Плотность пород древесины: таблица, метод определения

Плотность древесины – физическое свойство, характеризующее отношение массы сухого материала к его объему. Этот показатель учитывается при перевозке, обработке и применении дерева. Плотность древесины используется при проведении физико-математических расчетов во время сортировки пиломатериалов.

Что такое плотность древесины

Единицей измерения плотности древесины является гм/см3 или кг/м3 (в системе СИ). Этот показатель определяется по формуле: р = mb/Vb. Символ m обозначает массу материала, b – параметр влажности, Vb – объем влажного вещества. Выделяют следующие виды плотности древесины:

  1. Удельный вес (условная или базисная плотность): характеризует отношение массы сухого древесинного вещества к его объему.
  2. Объемный вес (средняя плотность): определяет отношение массы структурированного физического тела во влажном состоянии к его объему.

В древесине присутствует большое количество межклеточных пространств, называемых пустотами. Древесинное вещество получается при помощи спрессовывания дерева. В результате пустоты полностью исчезают. Плотность спрессованной древесины меньше удельного веса древесинного вещества. Чем выше величина этого показателя, тем прочнее материал. Древесина с большим удельным весом труднее поддается обработке и не пропитывается антисептиками.

Измерение плотности осуществляется по следующему алгоритму:

  1. Выдержать измеряемый образец до влажности не менее 11 %.
  2. Расчет размерных характеристик и веса деревянной заготовки.
  3. На основе проведенных измерений производится расчет объема древесины. Заготовка увлажняется в дистиллированной воде в течение 3 суток, пока ее толщина не увеличится на 0,1 мм.
  4. Повторно измеряются размер и вес увлажненной древесины. На основе новых данных производится расчет максимального объема.
  5. Заготовка высушивается и повторно взвешивается. Масса сухого образца делится на максимальный объем. Результат вычислений будет являться базисной плотностью.
  6. Повторно измеряется масса сухой заготовки. На основе этих значений вычисляется удельный вес древесины.

Алгоритм вычисления данного показателя указан в ГОСТ 16483.1-84. Проводить измерения рекомендуется на заготовках в форме прямоугольной линзы. Длина основания измеряемого образца должна равняться 20 мм, ширина – 20 мм, высота – 30 мм. Грани заготовки необходимо тщательно обработать перед измерением плотности древесины.

В большинстве стран Европы, вместо плотности древесины, используется показатель прироста. Он характеризует среднюю толщину слоев роста. Этот параметр используется при расчете величины изменения объема дерева в течение некоторого промежутка времени. Главным преимущества параметра прироста является легкость расчета, что позволит снизить затраты на проведение математических измерений. Согласно мнению профессиональных специалистов, этот параметр не характеризует физические свойства древесины. Поэтому он не связан с плотностью вещества. В Российской Федерации показатель прироста используется центрами по экспертизе и стандартизации лесоматериалов.

Взаимосвязь с другими параметрами

Плотность древесины связана со следующими физическими свойствами дерева:

  1. Пористость: структура деревянных брусков имеет неоднородную структуру и состоит из большого количества пор. Чем больше пустых пространств в составе деревянной заготовки, тем меньше плотность ее материала.
  2. Вес: чем больше вес бруска, тем больше его масса. Этот показатель напрямую связан с плотностью вещества. Чем тяжелее пиломатериалы, тем они более плотные.
  3. Влажность: чем больше жидкости содержится в деревянном бруске, тем выше отношение массы материала к его объему. Этот показатель зависит от температуры окружающей среды и автоматически снижается при сушке дерева. При испарении влаги возможна механическая деформация деревянной заготовки.
  4. Абсорбция: это свойство характеризует способность дерева поглощать влагу. Чем выше впитывающая способность материала, тем выше его плотность. Если древесина поглощает большое количество жидкости, то на поверхности бруска будет присутствовать малое число пор. Степень абсорбции выше на поперечном срезе бруска, где основные поры не закрыты.
  5. Теплопроводность: характеризует способность вещества проводить тепловую энергию. Материалы с небольшой плотностью проводят тепло с меньшей интенсивностью. Это обусловлено большим количеством пор, заполненных кислородом. Они изолируют поверхность дерева от воздействия тепла. В результате материал нагревается в течение длительного промежутка времени. По этой причине в помещениях, где осуществляется термообработка материалов, используют пиломатериалы с высокой прочностью.
  6. Горючесть: чем меньше отношение массы древесины к объему, тем быстрее она воспламеняется. Это связано с большим количеством пор, заполненных жидкостью. Мягкие породы древесины горят с наибольшей интенсивностью.
  7. Прочность: при низкой плотности материал приобретает устойчивость к физическим деформациям. Крепкие бруски быстро раскалываются и изменяют свою форму при соударениях с инородными предметами.
  8. Биологические факторы: пиломатериалы с высокой плотностью материала не поддаются гниению. Это обусловлено большим количеством пор, поглощающих влагу. При выдержке материала в дистиллированной воде можно улучшить его устойчивость к воздействию биологических факторов.

Одним из главных свойств, связанных с плотностью, является твердость древесины. Она характеризует способность дерева выдерживать сильные нагрузки. Чем больше объемный вес деревянного бруска, тем больше его твердость. Мягкие породы имеют высокую теплопроводность и не подвергаются механическим деформациям. Твердая древесина воспламеняется с меньшей интенсивностью.

Твердость определяется тестом по Бринеллю. Для осуществления расчетов требуется металлический шарик диаметром 1 мм. Он вдавливается в поверхность деревянной заготовки. Проделанное отверстие измеряется при помощи линеек и штангенциркулей. Глубина измеряемой лунки является коэффициентом Бринелля, использующимся для оценки твердости материала.

При самостоятельном определении коэффициента Бринелля могут возникнуть погрешности, что приведет к неточности измерении. Поэтому для оценки устойчивости материала применяется таблица твердости разных пород древесины:

Коэффициент Бринелля пород древесины
Разновидность древесиныКоэффициент БринелляОсобенности материала и область применения
Акация7,1 кгс/мм²Произрастает в Северной Америке. Используется для изготовления паркета и мебели.
Бук3,8  кгс/мм²Растет на территории Европы, Западной Азии, Северной и Южной Америки. Бук обладает мягкой фактурой легко обрабатывается режущими инструментами.
Бамбук4,7 кгс/мм²Растет в Юго-Восточной Азии. Устойчив к высоким перепадам температур, эффективно впитывает влагу. Используется в медицине.
Берёза3,3 кгс/мм²Произрастает в Европе. Имеет низкую устойчивость к воздействию высоких температур. Применяется при производстве элементов декора.
Вишня3,6 кгс/мм²Растет в Европе, Азии и Северной Америке. Имеет ровноволокнистую структуру и легко поддается обработке.
Граб3,5 кгс/мм²Произрастает на юге России. Обладает скрученными волокнами и высокой прочностью.
Дуб3,8 кгс/мм²Растет в Европе и Северной Америке. Устойчив к механическим деформациям, имеет долгий срок эксплуатации. Используется при изготовлении дощатых полов.
Ель1,3  кгс/мм²Произрастает на территории Европы и Северной Америки. Отличается неоднородностью цвета и низкой степенью абсорбции. Применяется в строительном секторе.
Клён4,8 кгс/мм²Произрастает в Северной Америке и Европе. Склонен к образованию трещин. Применяется при изготовлении мебели.
Орех грецкий5  кгс/мм²Произрастает на территории Южной Европы, Средней Азии и Ближнего Востока. Отличается высокой влажностью и прочностью структуры. Применяется в медицине.
Ольха3,0 кгс/мм²Растет в Западной Азии. Европе и Северной Африке. Имеет тонкую структуру и поддается деформации. Применяется при производстве паркета.
Сосна1,6  кгс/мм²Растет в Европе, Северной Америке и Азии. Имеет низкую теплопроводность и не воспламеняется. По этой причине данный материал активно используется при строении помещений, где проводится термическая обработка.
Ясень4,1 кгс/мм²Произрастает в Европе. Эластичен, легко поддается механической обработке. Используется для изготовления спортивных снарядов.

Таблица твердости используется на промышленных предприятиях. Она позволяет работникам выбрать оптимальные материалы для проведения физико-математических измерений.

Зависимость от влажности

Влажность древесины является одним из главным параметров, влияющих на плотность этого материала. При наличии большого количества влаги повышается вес бруска. В результате масса заготовки увеличивается. Поэтому плотность дерева, где отсутствует влага, ниже. Влажные образцы имеют высокую прочность и твердость.

Выделяют 3 основных категории древесины по влажности:

  1. Абсолютно сухая: значение влажности составляет менее 25 %.
  2. Воздушно-сухая (полусухая): влажность составляет от 25 до 35 %.
  3. Сырая: значение влажности составляет свыше 35 %.

Влажность свежесрубленной древесины составляет не менее 50 %. Поэтому сырье подвергается естественной сушке под навесом. Эта процедура позволяет снизить количество влаги до 25 %. Для дальнейшего снижения этого показателя требуется поместить дерево в сушильные камеры. Измерение можно проводить при влажности не более 12 %.

Измерение показателя твердости

Для определения твердости используются 3 основных метода:

  1. По коэффициенту Бринелля: в поверхность бревна или бруска вбивается шарик из металлических материалов. Диаметр вставляемого предмета составляет не более 1 см. Степень нагрузки на шарик определяется по следующей формуле: F = K × D2. K – отношение массы материала к его объему, D – диаметр шарика. Глубина полученного отверстия измеряется. Для определения твердости нужно разделить длину образованной лунки и степень нагрузки на шарик.
  2. По шкале Янка: в поверхность бревна или бруска вбивается стальной шарик с диаметром 11,3 см. После этого рассчитывается сила, с которой предмет был вдавлен в поверхность древесины. Важно, чтобы шарик углубился в заготовку на 50 % своего диаметра.
  3. По шкале Роквелла: в поверхность дерева вбивается индентор, представляющий собой алмазный конус. Измеряется глубина проделанного отверстия. Полученный результат сравнивается с табличными значениями. Оценка твердости осуществляется при помощи единицы измерения HR, равной 0,0002 мм.

Основные методы расчета показателя твердости описаны в ГОСТ 16483.17-81. В справочных материалах величина этого показателя указывается в 1 кгс/мм2 = 9,81 Н/мм2.

Классификация пород деревьев по плотности

Выделяют следующие разновидности древесины по показателю плотности:

  1. Породы с малой плотностью: от 1 до 540 кг/м3.
  2. Породы со средней плотностью: от 541 до 740 кг/м3.
  3. Породы с высокой плотностью: от 750 кг/м3.

Самое большое количество деревьев с плотной древесины растет на территории Европы, Северной и Южной Америки. Наивысшей плотностью обладает бакаут (до 1300 кг/м3). Самые плотные породы древесины указаны в Государственной системе справочных данных, контролируемой Госстандартом Российской Федерации.

Табличные значения плотности древесины

В следующей таблице представлена плотность различных пород древесины:

Таблица плотности древесины
Наименование дереваПлотность кг/м3
Акация830
Бамбук870
Берёза540-700
Бук650-700
Вишня американская490-670
Вяз670-710
Граб500-820
Дуб600-930
Ель400-500
Кедр580-770
Липа320-560
Лиственница950-1020
Ольха380-640
Орех грецкий500-650
Сосна400-500
Эвкалипт690-1110
Ясень660-700
Бальса (Бальза)120-160
Пихта сибирская390-430
Секвойя410
Тополь400-500
Ива460
Сосна450-500
Красное дерево540
Конский каштан560
Каштан съедобный590
Кипарис600
Черемуха610
Сапелли620
Лещина630
Клен полевой670
Тиковое дерево670
Груша690
Афрормозия700
Свитения (махагони)700
Платан700
Жостер (крушина)710
Падук750
Тисс750
Дуссия800
Кемпас800
Слива800
Сирень800
Боярышник800
Палисандр800-1000
Пекан (кария)830
Ярра830
Мербау840
Ятоба (мареил)840
Керуинг850
Кулахи850
Мутения850
Венге900
Лапачо900
Олива900
Сандаловое дерево900
Панга-панга950
Самшит960
Лим970
Сукупира1 000
Кумару1 100
Эбеновое дерево (Хурма)1 080
Черное дерево1 160
Квебрахо1 210
Гваякум или бакаут1 280

Наименьшей плотностью обладают хвойные породы деревьев. Наибольшее отношение массы к объему наблюдается твердых лиственных и тропических деревьев. Это обусловлено климатическими условиями. Хвойные деревья произрастают в лесных зонах и тундрах, где наблюдается недостаток влаги. По этой причине масса у них ниже, чем у тропических или лиственных пород. На плотность этих пиломатериалов могут оказывать влияние следующие факторы:

  1. Коробление – искажение формы дерева в результате внутренних напряжений.
  2. Наличие масел и смол в структуре древесины.
  3. Мягкость фактуры.

Плотность свежесрубленных хвойных деревьев составляет не более 850 кг/м³. Для твердых твёрдых лиственных пород значение этого показателя составляет 1000 кг/м³. Плотность клееной древесины равна плотности неклееной. Значение этого показателя для фанеры равен отношению массы древесных шпонов к его объему.

Плотность древесины разных пород | столярная мастерская «БукДуб» в Санкт-Петербурге

Данный параметр представляет собой соотношение массы древесины к ее объему. Плотность дерева выражается в кг/м³. В строительстве и изготовлении мебели или лестниц из дерева плотность служит для вычисления массы материалы.

Древесина имеет большое количество межклеточного пространства с пустотами. С помощью спрессовывания устраняются эти пустоты, за счет чего получают древесное вещество. Спрессованная древесина будет иметь меньшую плотность по отношению к удельному весу древесного вещества. Прочность материала будет зависеть от величины этого показателя. Древесина, имеющая больший удельный вес, трудно поддается обработке и антисептической пропитке.

 

 

 


Классификация древесины по плотности

По плотности древесины при влажности 12% все породы делят на три группы:

Все хвойные породы деревьев имеют низкую плотность. Исключениями могут быть только лиственница и несколько редких видов сосны.

 


Как измеряют плотность древесины?

Плотность древесины измеряется по определенному алгоритму:

 

 

Данный алгоритм расчета удельного веса прописан в ГОСТ 16483.1-84. В рекомендациях указано, что измерения лучше всего проводить на заготовках, которые имеют форму прямоугольной линзы. Грани образца должны быть хорошо обработаны. Размеры заготовки должны быть следующими: длина – 20 мм, ширина 20 мм, высота 30 мм.

 


Зависимость плотности дерева от влажности

На плотность древесины влияют несколько параметров. Но ключевым является влажность дерева. Чем выше влажность, тем больше вес бруска. За счет этого увеличивается масса заготовки. В результате древесина с повышенной влажностью имеет большую плотность.

 

 

Выделяют 3 основных категории древесины по влажности:

Свежесрубленная древесина обычно имеет влажность не менее 50%. Материал проходит сушку на свежем воздухе под специальным навесом. Такая процедура убирает влагу до 25%. Чтобы добиться 12% влажности дерева помещают в сушильную камеру. Только при таком проценте влажности можно проводить измерение.

 


Табличные значения плотности древесины

В следующей таблице представлена плотность различных пород древесины:

Наименование дерева

Плотность кг/м3

Акация

830

Бамбук

870

Берёза

540-700

Бук

650-700

Вишня американская

490-670

Вяз

670-710

Граб

500-820

Дуб

600-930

Ель

400-500

Кедр

580-770

Липа

320-560

Лиственница

950-1020

Ольха

380-640

Орех грецкий

500-650

Сосна

400-500

Эвкалипт

690-1110

Ясень

660-700

Бальса (Бальза)

120-160

Пихта сибирская

390-430

Секвойя

410

Тополь

400-500

Ива

460

Сосна

450-500

Красное дерево

540

Конский каштан

560

Каштан съедобный

590

Кипарис

600

Черемуха

610

Сапелли

620

Лещина

630

Клен полевой

670

Тиковое дерево

670

Груша

690

Афрормозия

700

Свитения (махагони)

700

Платан

700

Жостер (крушина)

710

Падук

750

Тисс

750

Дуссия

800

Кемпас

800

Слива

800

Сирень

800

Боярышник

800

Палисандр

800-1000

Пекан (кария)

830

Ярра

830

Мербау

840

Ятоба (мареил)

840

Керуинг

850

Кулахи

850

Мутения

850

Венге

900

Лапачо

900

Олива

900

Сандаловое дерево

900

Панга-панга

950

Самшит

960

Лим

970

Сукупира

1 000

Кумару

1 100

Эбеновое дерево (Хурма)

1 080

Черное дерево

1 160

Квебрахо

1 210

Гваякум или бакаут

1 280

Хвойные породы деревьев обладают меньшей плотностью. Лиственные и тропические деревья имеют большее соотношение массы и к объёму, что объясняется климатическими условиями. При повышенной влажности масса древесины будет больше. Однако в лесных зонах и тундрах, где произрастают хвойные породы, наблюдается нехватка влаги. За счет этого масса у деревьев ниже.

Плотность дерева, древесины

Плотность древесины (плотность дерева)— это отношение массы древесины к ее объему. (Плотность различных пород дерева в таблице.) Выражается плотность в кг/м3 . Плотность древесины зависит от ее влажности. Все показатели физико-механических свойств древесины определяются при влажности 12%. Между прочностью и плотностью существует тесная связь. Более тяжелая древесина, как правило, является более прочной. Плотность определяется массой древесного вещества в единице объема.

По плотности древесину при влажности 12% можно разделить на 3 группы:

Порода

Плотность, г/см3

Плотность, кг/м3

Легкая

Бальса

0.15

150

Пихта сибирская

0.39

390

Ель

0.45

450

Ива

0.46

460

Ольха

0.46-0.64

460-640

Осина

0.51

510

Сосна

0.52

520

Липа

0.53

530

Тополь серый

0.55

550

Средняя плотность

Конский каштан

0.56

560

Вишня

0.58

580

Тис обыкновенный

0.6

600

Тик

0.62-0.75

620-750

Орех грецкий

0.64

640

Клён белый(явор)

0.65

650

Клён виргинский (птицеглазный)

0.65

650

Береза

0.65

650

Бук

0.65

650

Вишня

0.66

660

Лиственница

0.66

660

Тиковое дерево

0.67

670

Бук

0.68

680

Дуб

0.69

690

Свитения (махагони)

0.70

700

Платан (чинар)

0.70

700

Плотные породы

Ясень

0.75

750

Слива

0.80

800

Граб

0.80

800

Пекан (кария)

0.83

830

Оливковое дерево (маслина)

0.85-0.95

850-950

Яблоня

0.9

900

Самшит

0.96

960

Хурма эбеновая

1.08

1080

Таблица: плотность дерева в г/см3,кг/м3

В абсолютно сухом состоянии плотность на 20-40% ниже чем указанная в таблице.

Плотность древесины имеет большое практическое значение. Более плотная древесина тяжелее и твёрже, соответственно она более прочнее и труднее в обработке. Более плотная древесина хуже пропитывается антисептиками, менее подвержена истиранию на таких местах как полы, лестницы, перила.

 

таблица плотности разных пород деревьев. От чего зависит средняя плотность и как ее определяют? Что это такое?

Плотность древесины – это важнейшая характеристика материала, которая позволяет рассчитать нагрузку при транспортировке, обработке и использовании деревянного сырья или предметов. Данный показатель измеряется в граммах на кубический сантиметр или в килограммах на кубометр, но загвоздка кроется в том, что эти показатели нельзя считать стабильными.

Что это такое и от чего зависит?

Плотность древесины, если говорить сухим языком определений, представляет собой отношение массы материала к его объему. На первый взгляд, определить показатель не сложно, однако плотность сильно зависит от количества пор в конкретной породе дерева и его способности удерживать влагу. Поскольку вода является более плотным веществом, чем многие виды сухой древесины и, естественно, более плотным, чем пустоты между волокнами, процент ее содержания сильно сказывается на итоговом показателе.

Ввиду всего вышесказанного выделяют два показателя плотности древесины, которые близки к самому общему определению, но при этом являются более точными.

Плотность древесного материала взаимосвязана с некоторыми другими физическими свойствами. Например, наличие пор означает присутствие газовых пузырьков в толще дерева – понятно, что они весят меньше, занимая тот же объем. Поэтому древесина с пористой структурой всегда имеет плотность более низкую, чем тот сорт, для которого большое количество пор не характерно.

Аналогично наблюдается взаимосвязь плотности с влажностью и температурой. Если поры материала заполняет тяжелая вода, то и сам брусок становится тяжелее, и наоборот – при сушке материал дает лишь незначительную усадку по объему, но существенно теряет в плане массы. Температура тут замешана по еще более сложной схеме – при повышении она, с одной стороны, принуждает воду расширяться, увеличивая объем заготовки, с другой – провоцирует более быстрое испарение. При этом снижение температуры ниже нуля превращает влагу в лед, который, не прибавляя в весе, несколько увеличивается в объеме. И испарение, и замерзание влаги в древесной структуре чреваты механической деформацией бруска.

Раз зашла речь о влажности, стоит уточнить, что по её уровню выделяют три категории срубленной древесины. При этом у свежесрубленного материала содержание влаги обычно составляет не менее 50%. При показателях более 35% дерево считается сырым, показатель в пределах 25-35% позволяет считать материал полусухим, понятие абсолютной сухости начинается с 25% содержания воды и меньше.

До абсолютной сухости сырье можно довести даже при естественной сушке под навесом, а вот для достижения еще более низкого содержания воды придется использовать специальные сушильные камеры. При этом проводить измерения следует с древесиной, чья влажность не превышает 12%.

Плотность также тесно связана с абсорбцией, то есть способностью древесины конкретного сорта впитывать влагу из атмосферного воздуха. Материал с высоким показателем абсорбции априори будет плотнее – просто потому, что он постоянно забирает воду из атмосферы и в нормальных условиях не может быть мало-мальски сухим.

Зная параметры плотности дерева, можно примерно судить и о его теплопроводности. Логика очень проста: если древесина не плотная, значит, в ней много воздушных пустот, и деревянное изделие будет обладать хорошими теплоизоляционными свойствами. Если воздух обладает низкой теплопроводностью, то вода – как раз наоборот. Таким образом, высокая плотность (а значит, и содержание влаги) говорит о том, что для теплоизоляции конкретный сорт дерева совершенно не годится!

В плане горючести в целом наблюдается подобная тенденция. Поры, заполненные воздухом, сами по себе гореть не могут, но процессу и не мешают, потому неплотные сорта древесины обычно горят довольно хорошо. Высокая плотность, обусловленная значительным содержанием воды, – это прямое препятствие для распространения огня.

Немного парадоксально, но менее плотные сорта древесины отличаются повышенной сопротивляемостью к деформации от удара. Причина кроется в том, что подобный материал проще сжать за счет большого количества незаполненных внутренних пустот. С плотным деревом так не получится – последует смещение тяжелых волокон, потому чаще всего заготовка от сильного удара расколется.

Наконец, плотная древесина в большинстве случаев в меньшей степени подвержена гниению. В толще такого материала просто нет свободного пространства, а влажное состояние волокон – это норма для него. Ввиду этого при обработке древесины иногда даже используют вымачивание в обыкновенной дистиллированной воде, используя это как метод защиты от воздействия нежелательных биологических факторов.

Как определяют?

Если рассматривать определение плотности древесины сугубо с точки зрения математической формулы, то массу изделия, умноженную на параметр влажности, делят на объем, также умноженный на тот же параметр. Влажностный параметр включается в формулу ввиду того, что, впитывая воду, сухое дерево имеет свойство разбухать, то есть увеличиваться в объеме. Невооруженным глазом это может быть не заметно, но для решения большинства задач важно учитывать каждый лишний миллиметр и килограмм.

Рассматривая практическую сторону измерений, отталкиваемся от того, что перед измерениями надо сначала добиться влажностного равновесия – когда из древесины путем сушки удалена лишняя вода, но при этом материал не слишком сухой и не станет тянуть влагу из воздуха. Для каждой породы рекомендуемый параметр влажности будет своим, но в целом показатель не должен падать ниже 11%.

После этого производятся необходимые первичные измерения – замеряются габариты заготовки и на основе этих данных высчитывается объем, затем опытный кусок древесины взвешивается.

Далее заготовку отмачивают в дистиллированной воде на протяжении трех суток, хотя есть и другой критерий прекращения вымачивания – надо добиться, чтобы толщина куска выросла хотя бы на 0,1 мм. Добившись требуемого результата, разбухший фрагмент опять измеряют и взвешивают, получая максимальный объем.

Следующий шаг – длительная сушка древесины, оканчивающаяся очередным взвешиванием.

Масса высушенной заготовки делится на максимальный объем, который был характерен для этого же, но разбухшего от влаги куска. В результате получается та самая базисная плотность (кг/м³) или удельный вес.

Описанные действия являются инструкцией, признанной в России на государственном уровне, – порядок операций и расчетов зафиксирован в ГОСТе 16483.1-84.

Поскольку каждый грамм и миллиметр имеют значение, стандарт регламентирует даже требования к заготовке – это пиломатериал в форме прямоугольника с длиной и шириной в 2 см при высоте 3 см. При этом для максимальной точности измерений заготовка подлежит обязательной тщательной обработке перед началом опытов. Выступы и шероховатость не должны влиять на показания.

Плотность разных пород

Из вышесказанного можно было сделать предсказуемый вывод, что процедура измерения и оценки плотности древесины – задача довольно сложная и требующая весьма точных замеров. В большинстве случаев всю сложную работу за потребителя выполняют заготовители и поставщики – на упаковках той же обрезной или паркетной доски должны быть указаны все основные свойства материала.

Дело обстоит сложнее, если человек даже заготовкой древесины различных сортов занимается сам, ведь тогда никакой информативной упаковки не будет, но тогда можно найти в интернете примерные показатели плотности для каждого сорта дерева, из которых составляются целые таблицы. Важно лишь помнить, что на влажность каждого отдельного бруска влияет множество факторов, отдельно описанных выше, а значит, в конкретном случае колебания массы весьма вероятны.

В некоторых случаях возможна другая ситуация: когда перед мастером поставлена только задача, но еще нет никакой древесины для ее реализации. Сырье предстоит закупить самостоятельно, но при этом надо сообразить, какая порода окажется наиболее эффективной.

Учитывая, что плотность сказывается на многих других практических качествах древесины, можно сразу отсеять преобладающую часть неподходящих претендентов, сориентировавшись на конкретную категорию материала. Специально для этого выделяют три основные группы сортов древесины по плотности.

Малая

Невысокая плотность практична хотя бы с той точки зрения, что легкую древесину проще заготавливать и перевозить, да и грузчики будут благодарны потребителю за выбор именно такого дерева. Согласно распространенной классификации, верхним пределом плотности для дерева малой плотности являются 540, реже 530 кг/м³.

Именно к этой категории относятся основная масса промышленных хвойных пород, таких как ели и сосны, осина и многие виды ореха, каштан и кедр, ива и липа. Вишня и ольха, в зависимости от конкретного сорта и условий, могут относиться к породам с малой и средней плотностью, причем вишня – чаще к средней. Ввиду сравнительной простоты транспортировки такая древесина стоит дешевле. Еще одним очевидным аргументом в пользу ее дешевизны и востребованности является то, что значительная часть отечественных лесов сложена именно из таких пород.

Специалисты отмечают, что деревья с малой плотностью стволов больше всего распространены именно в северных регионах. Обусловлено это тем, что регионы, в которых растут леса соответствующих пород, не всегда могут обеспечить растительному миру большое количество влаги.

Подстраиваясь под существующие условия, растения с малой плотностью древесины формируют стволы относительно невысокой влажности, что в итоге сказывается на массе.

Средняя

Древесина средней плотности – это «золотая середина» при выборе материала, которая не обладает никакими явными преимуществами, кроме того существенного момента, что у нее нет и явных недостатков. Не будучи слишком уж тяжелым, такой материал демонстрирует хорошую прочность на сжатие, не обладая явными недочетами плотных пород, вроде хорошей теплопроводности.

В категорию средней плотности входят пиломатериалы из лиственницы и березы, яблони и груши, рябины и клена, лещины и грецкого ореха, ясеня и тополя, черемухи, бука и вяза. Вишня и ольха имеют значительный разбег по показателю плотности, не позволяющий уверенно занести всех представителей породы в одну категорию – обе колеблются между малой и средней, причем ольха оказывается ближе к малой плотности. Показателями, позволяющими включить породу в категорию средней плотности, являются 540-740 кг/м³.

Как видим, это тоже весьма распространенные в наших краях породы деревьев, которые пользуются заметным спросом в различных сферах промышленности и могут похвастать высокими качествами не только в практической, но и в декоративной сфере.

Высокая

Повышенная плотность древесины может показаться недостатком ввиду того, что изделия из нее оказываются очень тяжелыми и массивными и не могут похвастать хорошими показателями теплоизоляции, да еще и раскалываются от удара.

При этом материал способен выдерживать значительные постоянные нагрузки без деформации, а также отличается сравнительно низкой горючестью и потрясающей долговечностью. Помимо прочего, такая древесина еще и сравнительно мало подвержена гниению.

Для попадания в категорию плотных пород нужна плотность древесины на уровне хотя бы 740 кг/м³. Из распространенных сортов древесины в первую очередь вспоминаются дуб и акация, а также граб и самшит. Сюда же следует отнести некоторые породы, не растущие в наших широтах, например, фисташковые и железные деревья.

Обратите внимание: почти все перечисленные породы относятся к категории дорогих и престижных. Даже их весьма существенный вес не препятствует тому, чтобы некоторые сорта материала везли из другого полушария, что лишь еще больше сказывается на стоимости.

Вывод отсюда только один: при всех своих недостатках такая древесина обладает рядом преимуществ, которые стоят того, чтобы щедро заплатить.

Таблица плотности (удельного веса) древесины

Плотность (удельный вес) древесины – крайне нестабильная величина. Плотность древесины изменяется в широких пределах даже для одной породы дерева. Значения величины плотности (удельного веса) древесины – это обобщённые цифры. Практическое значение величины плотности древесины отличается от приведённого усреднённого табличного значения и это не является ошибкой.

Калькулятор расчёта веса древесины и щепы
Плотность измельчённой древесины и древесных отходов
Таблица плотности щепы и измельчённой древесины

Таблица плотности (удельного веса) древесины
в зависимости от породы дерева

(продолжение статьи «Удельный вес (плотность) древесины»)

  «Справочник по массам авиационных материалов» изд. «Машиностроение» Москва 1975 г. Коломинова М.В., Методические указания для студентов специальности 250401 «Лесоинженерное дело», Ухта УГТУ 2010г
Порода дерева Плотность
древесины,
(кг/м3)
Предел
плотности
древесины,
(кг/м3)
Плотность
древесины,
(кг/м3)
Предел
плотности
древесины,
(кг/м3)
Эбеновое
(чёрное)
1260 1260 --- ---
Бакаутовое
(железное)
1250 1170-1390 1300 ---
Дуб 810 690-1030 655 570-690
Красное дерево 800 560-1060 --- ---
Ясень 750 520-950 650 560-680
Рябина (дерево) 730 690-890 --- ---
Яблоня 720 660-840 --- ---
Бук 680 620-820 650 560-680
Акация 670 580-850 770 650-800
Вяз 660 560-820 620 535-650
Граб --- --- 760 740-795
Лиственница 635 540-665 635 540-665
Клён 650 530-810 655 570-690
Берёза 650 510-770 620 520-640
Груша 650 610-730 670 585-710
Каштан 650 600-720 --- ---
Кедр 570 560-580 405 360-435
Сосна 520 310-760 480 415-505
Липа 510 440-800 470 410-495
Ольха 500 470-580 495 430-525
Осина 470 460-550 465 400-495
Ива 490 460-590 425 380-455
Ель 450 370-750 420 365-445
Верба 450 420-500 --- ---
Орех лесной 430 420-450 --- ---
Орех грецкий --- --- 560 490-590
Пихта 410 350-600 350 310-375
Бамбук 400 395-405 --- ---
Тополь 400 390-590 425 375-455

Прим.

Общепринято указывать величину плотности (удельного веса) древесины в зависимости от породы дерева. За показатель принимается усреднённое значение величины удельного веса, полученное методом обобщения результатов многократных практических измерений. Фактически – здесь опубликованы две таблицы плотности древесины, взятые из абсолютно разных источников. Небольшая разница в показателях наглядно свидетельствует о переменчивости плотности (удельного веса) древесины. Анализируя значения плотности древесины из вышеприведённой таблицы, стоит обратить внимание на отличия показателей авиационного справочника от университетской методички. Для объективности, приведена величина плотности древесины из обеих документов. С правом выбора читателем приоритета важности первоисточника.

Особое удивление вызывает табличная величина плотности лиственницы – 540-665 кг/м3. Некоторые интернет-источники указывают плотность лиственницы, равной 1450 кг/м3. Кому верить – не понятно, что лишний раз доказывает неопределённость и неизведанность поднимаемой темы. Лиственница – достаточно тяжёлый материал но, не настолько, чтобы камнем тонуть в воде.

Влияние влажности на удельный вес древесины

Зависимость удельного веса от влажности древесины
Влажность древесины – субъективный фактор, определяющий величину её удельного веса (плотности). С увеличением влажности, удельный вес древесины увеличивается. Совершенно очевидно, что наполнение полостей и пустот древесины водой, влечёт за собой увеличение суммарного веса куска древесины и, как следствие – увеличение её удельного веса. Поскольку, влажность древесины – это легко изменяемый показатель, то все таблицы и справочники приводят значение удельного веса древесины при фиксированном значении показателя влажности. Величина зафиксированного значения показателя влажности древесины обязательно указывается в пояснении к таблице. Как правило, табличный показатель влажности соответствует величине 12% для комнатно-сухой древесины, или 20% – для воздушно-сухой. (см. «Влажность древесины | Дрова»)

Удельный вес сплавной древесины

Примечательно, что с увеличением влажности древесины, уменьшается зависимость величины удельного веса этого материала от породы дерева. Удельный вес сплавной древесины (влажность 75-85%) практически не зависит от породы дерева и равняется, примерно 920-970 кг/м3. Объясняется это явление достаточно просто. Пустоты и поры в древесине заполняются водой, плотность (удельный вес) которой гораздо выше плотности вытесняемого воздуха. По своей величине, плотность воды приближается к плотности древесинного вещества, удельный вес которого практически не зависит от породы дерева. Таким образом удельный вес раскисших в воде кусков дерева менее зависим от его породы, нежели в случае с сухими образцами. В этом месте не лишне вспомнить, что для древесины существует разделение классических физических понятий «удельного веса» и «плотности». (см. «Влажность древесины | Дрова»)

Группы плотности древесины

Условно, все породы деревьев делятся на три группы
(по плотности своей древесины, при влажности 12%):

  1. Породы с малой плотностью (до 540 кг/м3) – ель, сосна, пихта, кедр, можжевельник, тополь, липа, ива, осина, ольха чёрная и белая, каштан посевной, орех белый, серый и маньчжурский, бархат амурский;
  2. Породы средней плотности (550-740 кг/м3) – лиственница, тис, берёза повислая, пушистая, чёрная и жёлтая, бук восточный и европейский, вяз, груша, дуб летний, восточный, болотный, монгольский, ильм, карагач, клён, лещина, орех грецкий, платан, рябина, хурма, яблоня, ясень обыкновенный и маньчжурский;
  3. Породы высокой плотности (750 кг/м3 и выше) – акация белая и песчаная, берёза железная, гледичия каспийская, гикори белый, граб, дуб каштанолистный и араксинский, железное дерево, самшит, фисташка, хмелеграб.
Плотность древесины и её теплотворность

Плотность (удельный вес) древесины выступает главным показателем её отопительной энергетической ценности – теплотворности дров. Зависимость здесь прямая. Чем выше плотность структуры древесины у породы дерева, тем больше содержится в ней горючего древесинного вещества и, тем жарче из таких деревьев получаются дрова.

Альтернативное Отопление: дрова, дровяное, древесина

деревьев

© Предоставлено Линн Гюнтер

(примечание: ссылки на печатные издания находятся внизу этой страницы)

Деревья - важная часть нашего мира. Они поставляют древесину для строительства и целлюлозу для изготовления бумаги. Oни обеспечить среду обитания (жилища) для всех видов насекомых, птиц и других животных. Многие виды фруктов и орехов получают с деревьев, в том числе яблоки, апельсины, грецкие орехи, груши и персики. Даже сок деревьев полезен в пищу насекомым и для приготовления кленового сиропа - вкусняшки!

Деревья также помогают поддерживать чистоту воздуха и здоровье экосистем.Мы вдыхаем кислород и выдыхаем углекислый газ. Деревья вдыхать углекислый газ и выдыхать кислород. Мы идеальные партнеры!

Деревья делают многое для нас, окружающей среды и других растений и животных в природе, но мы любим деревья не только из практических соображений. Деревья тоже могут быть очень красивыми - достаточно высокими, кажется, что они касаются небо и такое большое вокруг, что их даже не обнять. Тысячи художников, как профессиональных, так и любителей, написали картины с деревьями и О них написаны тысячи стихов, песен и рассказов.Я предполагаю, что почти каждый на земле в какой-то момент их жизнь остановилась, чтобы наслаждаться красотой дерева.

Виды деревьев:

Есть два основных типа деревьев: лиственные и вечнозеленые. Листопадные деревья теряют все листья на часть год. В холодном климате это происходит осенью, поэтому деревья остаются голыми всю зиму. В В жарком и сухом климате лиственные деревья обычно теряют листья в сухой сезон.

Вечнозеленые деревья не теряют все листья при в то же время - у них всегда есть какая-то листва.Они действительно теряют свои листья понемногу, и новые растут, чтобы заменить старые, но Здоровое вечнозеленое дерево никогда не бывает без листьев.

Части дерева:

Корни:

Корни - часть дерева что растет под землей. У деревьев много корней - размер корневой системы обычно такой же большой, как часть дерево над землей. Это необходимо, потому что корни помогите поддержать дерево. Чтобы удержаться, нужно много корней. 100-футовое дерево!

Кроме того, чтобы дерево не при опрокидывании основная задача корней - собирать воду и питательные вещества из почвы и хранить их на время, когда не так много доступно.

Корона:

Корона изготовлена вверх из листьев и ветвей на вершине дерева. В корона оттеняет корни, собирает энергию от солнца (фотосинтез) и позволяет дереву удалять лишнюю воду для держать это прохладно (транспирация - аналогично потоотделению у животных). Короны Деревья бывают разных форм и размеров!

Листьев:

Листья входят в состав крона дерева. Это часть дерева, которая превращает энергию в пищу (сахар).Листья - это пищевые фабрики дерева. Oни содержат особенное вещество под названием хлорофилл - это хлорофилл, придающий листьям зеленый цвет. Хлорофилл - чрезвычайно важная биомолекула, используемая в фотосинтез - листья используют энергию солнца для преобразования углерода двуокись из атмосферы и вода из почвы в сахар и кислород. Сахар, который является пищей дерева, либо используется или хранится в ветвях, стволе и корнях. В кислород возвращается в атмосферу.

Филиалов:

Филиалы предоставляют опора для эффективного распределения листьев для типа дерево и окружающая среда. Они также служат проводниками для вода и питательные вещества, а также в качестве хранилища для дополнительного сахара.

Багажник:

Ствол дерева обеспечивает его форму и поддержку, а также поддерживает корону. В ствол переносит воду и питательные вещества из почвы и сахара из листьев.

Частей ствола:

Внутри ствола дерева несколько колец.Каждый год жизни дерева добавлено новое кольцо, так много людей ссылаются им как годовые кольца. Кольца действительно сделаны состоит из разных частей:

Кора:

Внешний слой ствола, веток и прутьев деревьев. Кора служит защитным слоем для более нежных внутри древесины дерева. У деревьев действительно есть внутренняя кора и внешняя кора - внутренний слой коры состоит из живых клетки, а внешний слой состоит из мертвых клеток, вроде как наши ногти.

Научное название внутреннего слоя коры - Флоэма. Основная задача этого внутреннего слоя - нести сок, полный сахара. от листьев к остальной части дерева.

Из коры делают ряд поделок, в том числе латекс, корица и некоторые виды ядов. Потому что кора - это защитный слой для дерева, защищающий его от насекомых и животных, неудивительно, что сильные вкусы, запахи и токсины часто можно найти в коре разных видов деревья.

Камбий:

Тонкий слой живых клеток внутри кора называется камбием. Это часть дерева, которая создает новые клетки, позволяя дереву расти шире с каждым годом.

Заболонь (ксилема):

Научное название заболони - ксилема. Он состоит из сети живых клеток, которые приносят воду и питательные вещества от корней до ветвей, веточек и листьев. Это самая молодая древесина дерева - с годами внутренняя слои заболони отмирают и становятся сердцевиной.

Сердцевина:

Сердцевина - это мертвая заболонь в центре ствола. Это самая твердая древесина дерева, придающая ему поддержку и силу. Обычно она более темного цвета, чем заболонь.

Пробка:

Pith - крошечное темное пятно рыхлой жизни клетки прямо в центре ствола дерева. Essential питательные вещества выносятся через сердцевину. Это размещение прямо в центре означает, что он наиболее защищен от повреждений насекомыми, ветром или животными.


Информация о деревьях - страница 1
(цвет) или (Ч / Б)
Информация о деревьях - страница 2
(цвет) или (Ч / Б)
Информация о деревьях - стр. 3
(цвет) или (Ч / Б)

Заполните пропуски:
Части листа дерева
(цвет) или (Ч / Б)

Части листа дерева
(цвет) или (Ч / Б)



Заполните пропуски:
Части Лист багажника
(цвет) или (Ч / Б)

Детали рабочего листа багажника
(цвет) или (Ч / Б)


Ссылки на материалы для печати и рабочие листы с других веб-сайтов:

Ознакомьтесь с испанской версией этого раздела>
.

Ошибка | Wyzant Resources

Ошибка | Ресурсы Wyzant .

Сколько деревьев вырубают каждый год? - Подземелье

отправлено Rainforest Action Network

Тропические леса по всему миру находятся в большой опасности. В отчете Продовольственной и сельскохозяйственной организации Объединенных Наций о состоянии лесов за 2016 год говорится, что ежегодно теряется 7 миллионов гектаров леса, а площадь сельскохозяйственных угодий увеличивается на 6 миллионов. Наибольшую угрозу для лесов сегодня представляет промышленное сельскохозяйственное производство таких товаров, как конфликтное пальмовое масло, ткани, бумага и лесозаготовки.По данным Global Forest Resources Assessment 2015, во всем мире остается всего 4 миллиарда гектаров леса.

Сколько деревьев вырубают каждый год? С какой целью?

  1. Что касается того, сколько деревьев вырубается каждый год, IntactForests.org приходит к выводу, что нетронутые лесные ландшафты с 2000 по 2013 год сокращались во всем мире на 70 000 квадратных километров в год (примерно размер Коста-Рики), в общей сложности 919 000 квадратных километров. Что касается «количества деревьев», которое оно представляет, невозможно точно подсчитать.Плотность деревьев в девственных лесах колеблется от 50 000 до 100 000 деревьев на квадратный километр, поэтому по математике это число составляет 9 0007 от 3,5 до 7 миллиардов деревьев, вырубаемых ежегодно.
  2. Согласно IntactForests.org , основные категории, способствующие потере лесов, включают: Заготовка древесины (37%), расширение сельского хозяйства (28%), лесные пожары (21%), строительство дорог для добычи и добычи ресурсов, трубопроводов и линии электропередач (12%) и расширение транспортных сетей по автомобильным дорогам (2%).

Ежегодно вырубается от 3,5 до 7 миллиардов деревьев.

Каковы основные последствия массового обезлесения и исчезновения лесов?

  1. Утрата биоразнообразия: Леса являются единственной пригодной для жизни средой обитания множества видов по всему миру, многие из которых даже не были обнаружены. Например, только один лесной массив - тропические леса Индонезии - покрывает всего 1 процент площади суши Земли, но содержит 10 процентов известных в мире видов растений, 12 процентов видов млекопитающих, в том числе находящихся под угрозой исчезновения орангутанов и находящихся под угрозой исчезновения суматранских тигров и носорогов. и 17 процентов всех известных видов птиц.
  2. Потеря стоков углерода и усиление климатических изменений: Леса, и особенно тропические леса, накапливают огромное количество углерода в своих лесах и торфяниках. Они служат поглотителями углерода, поглощая углерод, выбрасываемый в атмосферу из ископаемого топлива. И наоборот, когда леса вырубают, они выбрасывают этот углерод обратно в воздух. Двадцать процентов мировых выбросов парниковых газов происходит от вырубки мировых лесов.
  3. Права на землю и средства к существованию: Уничтожение лесов выталкивает прифронтовые общины и коренные народы из своих домов, нарушая их права человека, их права на землю, одновременно разрушая их образ жизни.

Станьте оператором быстрого реагирования в тропических лесах

С помощью безупречного исследования Rainforest Action Network мы отслеживаем деньги от лесных пожаров вплоть до залов заседаний 20 крупнейших мировых корпораций по производству снеков, известных как Snack Food 20. Наша сеть действий протестовала в своих офисах, названных размещали их в социальных сетях и преследовали своих руководителей на выступлениях, вынуждая их изменить свою политику в отношении поставщиков и перестать продавать наше будущее за быстрые деньги.Присоединяйтесь к сети, которая спасает последние оставшиеся тропические леса.

.

Визуализация распределений данных - документация seaborn 0.11.1

Первым шагом в любых усилиях по анализу или моделированию данных должно быть понимание того, как распределены переменные. Методы визуализации распределения могут дать быстрые ответы на многие важные вопросы. Какой диапазон охватывают наблюдения? Какова их основная тенденция? Они сильно смещены в одну сторону? Есть ли доказательства бимодальности? Есть ли существенные выбросы? Различаются ли ответы на эти вопросы по подмножествам, определяемым другими переменными?

Существует несколько различных подходов к визуализации распределения, каждый из которых имеет свои преимущества и недостатки.Важно понимать эти факторы, чтобы выбрать лучший подход для вашей конкретной цели.

Построение одномерных гистограмм

Возможно, наиболее распространенный подход к визуализации распределения - это гистограмма . Это подход по умолчанию в displot () , который использует тот же базовый код, что и histplot () . Гистограмма - это гистограмма, на которой ось, представляющая переменную данных, разделена на набор дискретных интервалов, а количество наблюдений, попадающих в каждый интервал, отображается с использованием высоты соответствующей полосы:

 пингвинов = sns.load_dataset («пингвины») sns.displot (пингвины, x = "flipper_length_mm") 

Этот график сразу дает некоторое представление о переменной flipper_length_mm . Например, мы можем видеть, что наиболее распространенная длина флиппера составляет около 195 мм, но распределение кажется бимодальным, поэтому это одно число не представляет данных хорошо.

Выбор размера корзины

Размер ячеек является важным параметром, и использование неправильного размера ячеек может ввести в заблуждение, скрывая важные особенности данных или создавая очевидные особенности из случайной изменчивости.По умолчанию displot () / histplot () выбирают размер ячейки по умолчанию на основе дисперсии данных и количества наблюдений. Но вы не должны слишком полагаться на такие автоматические подходы, потому что они зависят от определенных предположений о структуре ваших данных. Всегда рекомендуется проверять, что ваши впечатления от распределения одинаковы для разных размеров корзины. Чтобы выбрать размер напрямую, установите параметр binwidth :

 sns.displot (пингвины, x = "flipper_length_mm", binwidth = 3) 

В других случаях имеет смысл указать номер ячеек, а не их размер:

 sns.displot (пингвины, x = "flipper_length_mm", bins = 20) 

Один из примеров ситуации, когда значения по умолчанию не работают, - это когда переменная принимает относительно небольшое количество целочисленных значений. В этом случае ширина бункера по умолчанию может быть слишком маленькой, что создает неудобные пробелы в распределении:

 советов = sns.load_dataset ("подсказки") sns.displot (советы, x = "размер") 

Один из подходов - указать точные разрывы интервалов путем передачи массива в интервалы :

 sns.displot (tips, x = "size", bins = [1, 2, 3, 4, 5, 6, 7]) 

Этого также можно достичь, установив дискретный = Истина , который выбирает разрывы интервалов, которые представляют уникальные значения в наборе данных, с полосами, центрированными по их соответствующему значению.

 sns.displot (подсказки, x = "размер", дискретный = True) 

Также возможно визуализировать распределение категориальной переменной, используя логику гистограммы.Дискретные ячейки автоматически устанавливаются для категориальных переменных, но также может быть полезно немного «сжать» полосы, чтобы подчеркнуть категориальный характер оси:

 sns.displot (tips, x = "day", shrink = .8) 

Условие для других переменных

После того, как вы поймете распределение переменной, следующим шагом часто будет вопрос, отличаются ли характеристики этого распределения от других переменных в наборе данных. Например, чем объясняется бимодальное распределение длин плавников, которое мы видели выше? displot (), и histplot () обеспечивают поддержку условного подмножества через семантику hue .Присвоение переменной оттенка будет рисовать отдельную гистограмму для каждого из ее уникальных значений и различать их по цвету:

 sns.displot (пингвины, x = "flipper_length_mm", 
.

Simple English Wikipedia, бесплатная энциклопедия

Зеленые листья и желтые цветы нарцисса Изображение травянистого растения

Растения - одна из шести больших групп (царств) живых существ. Это автотрофные эукариоты, что означает, что они имеют сложные клетки и сами производят пищу. Обычно они не могут двигаться (не считая роста).

К растениям относятся знакомые виды, такие как деревья, травы, кусты, травы, виноградные лозы, папоротники, мхи и зеленые водоросли. Научное изучение растений, известное как ботаника, выявило около 350 000 существующих (живых) видов растений.Грибы и незеленые водоросли не относятся к растениям.

Большинство растений растут в земле, их стебли находятся в воздухе, а корни находятся под поверхностью. Некоторые плавают на воде. Корневая часть поглощает воду и некоторые питательные вещества, необходимые растению для жизни и роста. Они поднимаются по стеблю и достигают листьев. Испарение воды из пор листьев пропускает воду через растение. Это называется испарением.

Растению необходимы солнечный свет, углекислый газ, минералы и вода для получения пищи путем фотосинтеза.Зеленое вещество в растениях, называемое хлорофиллом, улавливает энергию Солнца, необходимую для приготовления пищи. Хлорофилл в основном находится в листьях, внутри пластид, которые находятся внутри клеток листа. Лист можно рассматривать как пищевую фабрику. Листья растений различаются по форме и размеру, но они всегда являются органом растения, наиболее подходящим для поглощения солнечной энергии. Как только пища превращается в лист, она транспортируется к другим частям растения, таким как стебли и корни. [5] [6]

Слово «растение» также может означать действие, при котором что-то кладут в землю.Например, фермеры сажают семена в поле.

Фотосинтез - это процесс, происходящий в листьях растения. Листья - единственные части растения, которые могут выполнять этот процесс (по мере их адаптации). Это также известно как то, как растение получает пищу: вы можете ускорить процесс, добавив больше CO2, света и хлорофилла.

Зеленые водоросли:

Наземные растения (эмбриофиты)

Хлоропласты видны в клетках Plagiomnium affine

По крайней мере, некоторые клетки растений содержат фотосинтетические органеллы (пластиды), которые позволяют им производить пищу для себя.С солнечным светом, водой и углекислым газом пластиды производят сахара, основные молекулы, необходимые для растений. Свободный кислород (O 2 ) образуется как побочный продукт фотосинтеза. [7]

Позже, в цитоплазме клетки, сахара могут быть превращены в аминокислоты для белков, нуклеотиды для ДНК и РНК и углеводы, такие как крахмал. Для этого процесса необходимы определенные минералы: азот, калий, фосфор, железо и магний. [8]

Питательные вещества для растений [изменить | изменить источник]

Питание растений - это изучение химических элементов, необходимых для роста растений.

Макронутриенты:

Микронутриенты (микроэлементы) включают:

Корни растений выполняют две основные функции. Сначала они прикрепляют растение к земле. Во-вторых, они поглощают воду и различные питательные вещества, растворенные в воде из почвы. Растения используют воду для приготовления пищи. Вода также поддерживает растение. Растения, которым не хватает воды, становятся очень вялыми, а их стебли не могут поддерживать листья. Растения, которые специализируются на пустынных территориях, называются ксерофитами или фреатофитами, в зависимости от типа роста корней.

Вода транспортируется от корней к остальным частям растения через специальные сосуды в растении. Когда вода достигает листьев, часть ее испаряется в воздух. Многие растения нуждаются в помощи грибов, чтобы их корни работали правильно. Этот симбиоз растения и грибов называется микоризой. Бактерии ризобии в корневых клубеньках помогают некоторым растениям получать азот. [9]

Цветы и опыление [изменить | изменить источник]

Цветки являются репродуктивным органом только цветущих растений (Покрытосеменных).Лепестки цветка часто ярко окрашены и пахнут, чтобы привлечь насекомых и других опылителей. Тычинка - мужская часть растения. Он состоит из нити (стебля), удерживающей пыльник, производящий пыльцу. Пыльца нужна растениям для производства семян. Плодолистник - женская часть цветка. В верхней части плодолистика находится рыльце. Фасон - шейка плодолистника. Яичник - это припухлость в нижней части плодолистика. Завязь дает семена.Чашелистик - это лист, который защищает цветок как бутон.

Процесс, при котором пыльца переносится с одного цветка на другой, называется опылением. Этот перенос может происходить по-разному. Насекомых, например пчел, привлекают яркие душистые цветы. Когда пчелы входят в цветок, чтобы собрать нектар, колючая пыльца прилипает к их задним лапам. Клейкое клеймо на другом цветке улавливает пыльцу, когда пчела приземляется или летит рядом с ним.

Некоторые цветы переносят пыльцу по ветру.Их болтающиеся тычинки производят много пыльцы, достаточно легкой, чтобы разноситься ветром. Их цветки обычно маленькие и не сильно окрашены. Рыльца этих цветов перистые и свешиваются за пределы цветка, чтобы улавливать пыльцу во время ее падения. [10]

Посевные путешественники [изменить | изменить источник]

Растение дает много спор или семян. Низшие растения, такие как мох и папоротник, производят споры. Семенные растения - голосеменные и покрытосеменные. Если все семена, кроме растения, упадут на землю, территория может стать переполненной.На все семена может не хватить воды и минералов. У семян обычно есть способ добраться до новых мест. Некоторые семена можно разнести ветром или водой. Семена внутри сочных плодов рассыпаются после употребления в пищу. Иногда семена прилипают к животным и таким образом разносятся. [11]

Вопрос о самых ранних окаменелостях растений зависит от того, что подразумевается под словом «растение».

  1. Если под растениями мы понимаем фототрофов, использующих хлорофилл, то цианобактерии в строматолитах - первые окаменелости, 3450 миллионов лет назад (млн лет назад) в архейском эоне.Замечательная точность возможна, потому что окаменелости были зажаты между потоками лавы, которые можно было точно датировать по кристаллам циркона. [17] [18]
  2. Если к растениям мы относим все типы водорослей, то самые ранние известные красные водоросли жили 1,6 миллиарда лет назад. Их окаменелости были недавно найдены в Индии. [19]
  3. Если под растениями мы подразумеваем зеленые растения Viridiplantae, то первыми ископаемыми являются зеленые водоросли. Вероятно, это позиция большинства профессиональных ботаников.Имеются убедительные доказательства монофилии харофитных зеленых водорослей и эмбриофитов. [20] Есть еще два варианта:
    1. Акритархи (группа микрофоссилий с органическими стенками) могут быть репродуктивными цистами зеленых водорослей. Если так, то они присутствуют в неопротерозое, 1000 млн лет назад. [21]
    2. В противном случае в кембрийский период наблюдается значительный рост планктонных водорослей около 540 млн лет назад. [21]
  4. Если под растениями мы подразумеваем наземные растения, то первые окаменелости находятся в силурии. [22]

К силурийскому периоду сохранились окаменелости целых растений, включая ликофита Baragwanathia . В девоне были обнаружены детальные окаменелости риниофитов. Ранние окаменелости этих древних растений показывают отдельные клетки в растительной ткани. В девонский период также появилось первое дерево в летописи окаменелостей - Wattezia . Это похожее на папоротник дерево имело ствол с листьями и давало споры.

Угольные месторождения являются основным источником окаменелостей палеозойских растений, причем в настоящее время существует множество групп растений.Отвалы угольных шахт - лучшее место для сбора; сам уголь - это остатки окаменелых растений, хотя структурные детали окаменелостей растений редко видны в угле. В Лесу окаменелостей в парке Виктория в Глазго пни Lepidodendron деревьев найдены в их первоначальных положениях роста.

Викискладе есть медиафайлы, связанные с Растения .
  1. Кавальер-Смит, Т.(1981). «Царства эукариотов: семь или девять?». Биосистемы . 14 (3–4): 461–481. DOI: 10.1016 / 0303-2647 (81)
  2. -2. PMID 7337818.
  3. Lewis, L.A .; Маккорт, Р. (2004). «Зеленые водоросли и происхождение наземных растений». Американский журнал ботаники . 91 : 1535–1556. DOI: 10.3732 / ajb.91.10.1535. PMID 21652308.
  4. Кенрик, Пол; Крейн, Питер Р. (1997). Происхождение и ранняя диверсификация наземных растений: кладистическое исследование .Вашингтон, округ Колумбия: Пресса Смитсоновского института. ISBN 1-56098-730-8 .
  5. Адл, С. и другие. (2005). «Новая классификация эукариот более высокого уровня с упором на таксономию простейших». Журнал микробиологии эукариот . 52 : 399–451. DOI: 10.1111 / j.1550-7408.2005.00053.x. PMID 16248873. CS1 maint: использует параметр авторов (ссылка)
  6. ↑ Азимов, Исаак 1968. Фотосинтез . Основные книги, Нью-Йорк, Лондон.ISBN 0-465-05703-9.
  7. ↑ Обучение естествознанию на среднем уровне, 5-6 классы, Майк Эванс и Линда Эллис
  8. ↑ Смит А.Л. 1997. Оксфордский словарь биохимии и молекулярной биологии . Издательство Оксфордского университета. p508 ISBN 0-19-854768-4. «Фотосинтез - синтез организмами органических химических соединений, особенно углеводов, из углекислого газа с использованием энергии, полученной от света, а не окисления химических соединений».
  9. ↑ Рабинович Э. и Говинджи 1969. Фотосинтез . Wiley, Лондон. ISBN 0-471-70424-5
  10. ↑ Маузет, Джеймс Д. 2003. Ботаника: введение в биологию растений . Джонс и Бартлетт, Бостон.
  11. ↑ Поус, Динора. Наука и растения . Голубая планета.
  12. ↑ Феннер, Майкл и Томпсон, Кен 2005. Экология семян . Кембридж. ISBN 978-0-521-65368-8
  13. ↑ Т. Кавальер Смит 2007, Эволюция и взаимоотношения водорослей основных ветвей древа жизни.из: Распутывание водорослей, Броди и Льюис. CRC Press
  14. Шевчикова, Тереза; и другие. (2015). «Обновление эволюционных отношений водорослей посредством секвенирования пластидного генома». Научные отчеты . 5 : 10134. Bibcode: 2015NatSR ... 510134S. DOI: 10,1038 / srep10134. PMC 4603697. PMID 26017773.
  15. ↑ Теодор Коул и Хартмут Хильгер, 2013 г., Филогения мохообразных, архивировано 23 ноября 2015 г. в Wayback Machine
  16. ↑ Теодор Коул и Хартмут Хильгер, 2013 Филогения трахеофитов
  17. ↑ Теодор Коул и Хартмут Хилгер 2015 Филогения покрытосеменных, Систематика цветковых растений.Freie Universität Berlin
  18. ↑ Дж. Уильям Шопф 1999. Колыбель жизни: открытие самых ранних окаменелостей Земли . Princeton U. Press (страницы 87-89 и рисунок 3.9) ISBN 0-691-00230-4
  19. ↑ Knoll, Andrew H. 2004. Жизнь на молодой планете: первые три миллиарда лет эволюции на Земле . Принстон, Нью-Джерси ISBN 0-691-12029-3
  20. ↑ Briggs, Helen 2017. Обнаружены «самые старые растения на Земле». BBC News Наука и окружающая среда. [1]
  21. Льюис Л.РУКА. МакКорт 2004. "Зеленые водоросли и происхождение наземных растений". Американский журнал ботаники . 91 (10): 1535–1556.
  22. 21,0 21,1 Уиллис К.Дж. И МакЭлвейн Дж. С. 2002. Эволюция наземных растений . Oxford University Press, 38. ISBN 0-19-850065-3
  23. ↑ Wellman, Charles H .; Остерлофф, Питер Л. и Мохиуддин, Узма, 2003. Фрагменты самых ранних наземных растений. Природа 425 : 282–285.[2]
.

Смотрите также

Сайт о Бане - проект, посвященный строительству, эксплуатации и уходу за русской баней. Большой сборник статей, который может быть полезен любому любителю бани

Содержание, карта сайта.