Давление на грунт человека


Удельное давление на грунт

На вездеходной технике в качестве движителя часто используются гусеницы или шины сверхнизкого давления. Их основная задача — уменьшить удельное давление на грунт за счет увеличения площади опоры. Ничего сложного тут нет, по такому же принципу работают обычные лыжи. Если на лыжах человек может спокойно идти по снегу, то без них он сразу проваливается, т.к. площадь опоры уменьшается в несколько раз, а давление на снег, соответственно, увеличивается. Рассмотрим подробнее, как рассчитывается удельное давление на грунт, в чем измеряется и как его можно уменьшить на практике.

Как рассчитать удельное давление на грунт человека или техники?

Чтобы вычислить удельное давление на грунт достаточно разделить массу на площадь опоры. Например, площадь опоры всех колес автомобиля составляет 1000 квадратных сантиметров, а его масса — 1300 кг. Просто делим 1300 на 1000, получается 1,3 килограмм на квадратный сантиметр (кг/см^2). Соответственно удельное давление на грунт измеряется в кг/см^2, реже в других единицах. Получается, чем меньше масса и больше площадь опоры, тем меньше это значение. Рисунок ниже это отлично демонстрирует.

Удельное давление на грунт зависит от массы и площади опоры

Как уменьшить давление на грунт и для чего это делать?

Ну для чего это делать ясно — чтобы увеличить проходимость техники, особенно на слабонесущих грунтах. Обычно низким удельным давлением помимо вездеходной обладает военная и сельскохозяйственная техника. Опять же для проходимости и чтобы избежать сильного уплотнения почвы и повреждения посевов. Также сюда можно отнести снегоходы, отличающиеся очень низким давлением на поверхность.

Интересный факт: известный тяжелый немецкий танк времен Второй Мировой «Тигр» обладает удельным давлением на грунт 1,03 кг/см^2, что примерно в 1,5-2 раза больше этого показателя для среднестатистического человека. В руководстве по эксплуатации танка экипажу было предписано проверять несущую способность подозрительного участка, по которому нужно было проехать, интересным образом. Один солдат садил на себя второго и, если его ноги сильно проваливались в землю, это значило, что танк здесь не пройдет. Если же ноги не проваливались, то несущая способность грунта была достаточна для движения танка.

Чтобы создать технику с малым удельным давлением на грунт можно пойти несколькими путями:

  1. Использовать гусеницу (снегоходы, трактора, вездеходы, военная техника);
  2. Использовать шины сверхнизкого давления (вездеходы, некоторая сельскохозяйственная техника);
  3. Увеличить количество колес (грузовики, военная техника (БТР));
  4. Увеличить диаметр колеса (грузовики, колесные трактора, внедорожники).

Вывод

Чтобы быстро уменьшить удельное давление на грунт на обычном автомобиле, достаточно стравить давление в шинах до определенного значения. Так часто поступают владельцы внедорожников при движении по болотам и глубокой грязи.

Стоит заметить, что в некоторых ситуациях высокое давление будет предпочтительнее. Например по неглубокой грязи или снегу автомобиль на узкой резине может двигаться увереннее, чем на широкой. Этот подход используется в эндуро, где узкое переднее колесо как бы режет грязь, улучшая проходимость и управляемость.

Читайте также:

Теория проходимости Философия бездорожья Шины сверхнизкого давления Гусеничные модули на авто Особенности движения на мотоцикле по бездорожью

offroadrest.ru

Техника - молодёжи 1959-07, страница 12

БЕЗ ДОРОГ

Г. СМИРНО!, кандидат технических наук, доцент МВТУ имени БАУМАНА

Рис* Н. ВВЧКАН01А

Нак повысить проходимость колесных машин? Как обеспечить надежное движение по мягким грунтам?

Одним из таких путай является снижение удельного давления колеса на грунт.

В среднем у гусеничных машин эта величина колеблется от 0,4 до 0,8 кг/см9, а у некоторых гусеничных снегоходов удельное давление на грунт даже меньше, чем у человека, — 0,15 кг/см8. Автомобили более грузны: они имеют давление 1,5—5,0 кг/см8.

Какие способы применяют для снижения удельного давления? Один из них — увеличение размера колос. Однако большие колеса делают машину громоздкой.

Другой путь — увеличение числа осей и кола с. За последнее время во многих странах появились различные типы четырехосных (аосьми-колесных) машин. Их в шутку часто на-

Здесь наглядно видно, челе выгодна мно-гоосная машина.

зывают «сороконожками». У этих машин преимущество не только в том, что удельное давление колес на грунт в среднем в 2 раза меньше, чем у обычной двухосной. Четырехосная машина преодолевает рвы и ямы значительно большей ширины, чем двух-или трехосная. Четырехосная машина обладает значительно лучшей проходимостью не только по мягким грунтам, но и по различным неровностям.

Следующий путь повышения проходимости по мягким грунтам — »то снижение внутреннего давления воздуха в шинах. Чем меньше давление воздуха в шине, тем она мягче, тем она больше деформируется под нагрузкой. Это хорошо по двум причинам: во-первых, значительно деформированная шина имеет большую опорную площадку, а значит, меньшее удельное давление на грунт; во-вторых, мягкая шина хорошо приспосабливается к различным неровностям. «Сцеп-ляомость» колоса с грунтом, а значит, и проходимость колесной машины резко возрастают.

Применяется также переменное давление Так, автомобиль «ЗИЛ-157* снабжен системой централизованной накачки шии. Водитель, не выходя из кабины, может менять давление воздуха в шинах в пределах от 0,5 до 3,5 кг/см8.

Что зто дает?

Если автомобиль идет по твердой дорога, которая практически не деформируется при любых давлениях воздуха

8

в шине или удельных давлениях шины на дорогу, то шины можно накачать побольше. Они будут более жесткими, но зато уменьшатся потери на деформацию как грунта, так и шины, уменьшится сопротивление движению. Если жа машина идет по мягкому грунту, скажем по заболоченному участку или рыхлому снегу, то большое удельное давление заставляет колеса глубже проваливаться. Грунт сильнее сопротивляется движению, автомобиль застревает, буксует на месте. Иное дело, если давление воздуха -в шина приспущено. Шина проминается, площадь соприкосновения ее с грунтом становится больше, а удельное давление уменьшается.

Как показывает опыт, давление в шинах надо снижать значительно. Однако при малом давлении обычной шины хватает ненадолго. Шина начинает проскальзывать по ободу. Пришлось немного изменить конструкцию крепления шины к ободу, как зто сделано, например, на автомобиле «ЗИЛ-157», а потом была разработана и совершенно новая конструкция, получившая название грунтовой арочной шины. Эта шина крепится к ободу на за счет того, что ее поджимает к наружным кольцам обода внутреннее давление воздуха, как у велосипеда, мотоцикла или обычной автомобильной шины, а с помощью внутренних и наружных колец и расположенных по окружности болтов, надежно зажимающих кромки бортов шины. Такая шина имеет большую ширину и относительно малую высоту профиля. Площадь контакта с грунтом увеличивается, а диаметр остается близким к стандартному. Давление воздуха здесь около 0,6—1,0 кг/см8. Как и все новые шины, зти шины бескамерные. Испытания показали, что обычный автомобиль «ЗИС-150» с одной ведущей осью, но «обутый» в зти шины, имеет лучшую проходимость по заболоченной местности и снежной целине, чем автомобиль «ЗИС-151» с тремя ведущими осями на обычных шинах.

Если колесо жесткое, оно подпрыгнет на неровности... а если давление в нем небольшое, оно промнется.

Последнее время конструкторы, желая аще больше снизить удельное давление колес на грунт, пошли дальше. Колесо сделали аще шира. Давление еще больше снизилось, пришлось снова изменить и конструкцию — получилась мягкая «бочка» — мешок с воздухом, или, как теперь говорят, пнев-м о к а т о к. Ширина пиевмокатка иногда превышает его диаметр а 1,5 раза, но на последних моделях подобных машин она равна диаметру (так называемый «квадратный» каток).

Давление воздуха в пиевмокатках не

Вот что такое пневмокаток..

...ы как его приводят ш движение.

превышает 0,2—0,1 кг/см8, то есть оно в 10—20 раз меньше, чам у «Победы» или «Москвича». Опорная площадь получается очень большой.

Работа пнесмокатка отличается от работы обычной шины: вместо выдавливания грунта в стороны пневмокаток, профиль которого выполнен по дуга большого радиуса, проминается внутрь и уплотняет под собой грунт. Увеличивается несущая способность грунта, повышается проходимость. Машина с такими катками хорошо проходит по заболоченной местности, по снежной целина, рыхлому песку: ведь удельное давление на грунт у нее меньше, чам у самых лучших гусеничных машин, оно настолько мало, что машина может переехать через лежащего человека и на причинить ему вреда*

Каток сделан из 2—4 слоев прорезиненной нейлоновой или капроновой ткани, а не из 6—14 слоев корда, как обычная шина. Позтому эластичность у него больше* В отличиа от обычных колес здесь нет обода. Торцы «бочонка» сжаты с помощью двух рифленых конических металлических шайб и струны-вала, проходящего по оси «бочонка».

На 4-й странице обложки приведены принципиальные отличия между типами машин, о которых мы говорили. Катки' могут быть разной ширины и формы. Главный рисунок показывает, как может выглядеть универсальный вездеход. Машина для движения по рыхлому снегу и болотам изображена справа вверху. На самом нижнем рисунка — конструкция, позволяющая перевозить тяжелые грузы по плохим грунтовым дорогам, по паску и заболоченной местности. А в середине — совершенно иной тип автомобиля: многоосный. Восемь колес равномерно принимают на себя нагрузку автомобиля и снижают удельное давление на грунт.

У каждой из зтих конструкций есть свои достоинства и недостатки, нерешенные вопросы. Над этими задачами работает сейчас коллектив кафедры «Колесные машины» МВТУ имени Баумана, создавший совместно с Горькое* ским автомобильным заводом и НИИ шинной промышленности первые образцы экспериментальной машины с пнвв-мокатками.

Обратите внимание, как увеличивается площадь опоры и, следовательно, проходимость у широкой шины.

zhurnalko.net

Как рассчитать и снизить давление на грунт

В каком-то смысле сельскохозяйственную технику можно отнести к вездеходной. Перед ней стоят те же задачи – эффективно проходить как качественные асфальтированные дороги, так и влажный грунт, в котором можно увязнуть. Различие существует лишь в исполняемых машинами функциях. Удельное давление можно рассчитать для любого средства передвижения, и сегодня мы напомним, как и зачем его просчитывать. Также разберём способы снижения давления и последствия пренебрежения этим фактором на полях.

Удельное давление

Изначальная суть снижения давления на грунт – это необходимость просто пробраться сквозь непригодный для проезда участок. То есть, увеличить проходимость машин. Перспектива застрять в грязи посреди леса мало кого может обрадовать. В военное время проблема стоит ещё острее. Чтобы с ней разобраться, конструкторы принялись изобретать альтернативные обыкновенным колёсам движители.

Самый простой и действенный способ снизить нагрузку без глубинной модернизации техники – увеличить площадь их опоры на поверхность земли. Понимание относительно примитивных физических законов помогло создать несколько альтернативных вариантов движителей.

Были разработаны шины сверхнизкого давления, которые меняют форму под давлением веса машины, и существенно увеличивают площадь контакта с поверхностью. Для легковых автомобилей – это наиболее простое и эффективное решение. Установил подходящие шины, и любая местность нипочём.

Но что делать с габаритной военной, строительной или сельскохозяйственной техникой, вес которой может превышать 10, а то и 30 тонн? Для сверхтяжёлых агрегатов были разработаны гусеничные ленты, которые хоть и увеличивали вес машин, но распространяли опорное давление по площади. Контакт приходится не на 4 колеса (точки), а распространялся вдоль всей машины (как с лыжами).

Принцип измерения удельного давления на грунт

Самый простой способ понять, как распределяется опорное давление – представить передвижение по снежным сугробам. Пешком человеку необычайно трудно преодолевать сугробы метровой глубины. Но что произойдёт, если он встанет на лыжи? Опорное давление перестанет быть точечным, и распределиться на несколько метров в длину. Кажется, что удельное давление таким образом может сниться в 1,5-2 раза, но в действительность оно снизится ровно в 15 раз. С 0,60 до 0,04.

Для вычисления удельного давления на грунт достаточно разделить фактический вес объекта на площадь опоры. Если речь идёт об автомобиле, то площадь всех его колёс может достигать, например, 1 метра квадратного. То есть, 1000 кв. см. Для упрощения представим, что масса машины – ровно 1,5 тонны. Разделив 1500 кг на 1000 кв. см., получаем 1,5 кг на квадратный сантиметр удельного давления.

Соответственно, чем ниже вес агрегата, и чем больше площадь контакта, тем ниже давление. И если механику-водителю танка глубоко плевать на то, что будет с почвой, по которой он проедет, то оператор трактора сильно обеспокоен этим вопросом. Точнее обеспокоен его работодатель, который не сможет выращивать сельхозкультуры на загубленном поле, и потеряет деньги.

Способы уменьшения давления на грунт

Для сельскохозяйственной техники низкое удельное давление на почву – ключевой фактор. Всё земледелие базируется на здоровой структуре почвы и качественном усвоении микроэлементов растениями. При этом для обработки этой самой почвы, внесения удобрений и семян нередко используется крупногабаритная техника.

Чтобы экономить драгоценное время, крупные хозяйства используют мощные европейские тракторы именитых марок и соответствующее прицепное оборудование. Оно может охватывать в ширину сразу 10 и более метров площади за один проход. Естественно вместе с мощью растёт и вес агрегатов, что становится серьёзной проблемой на слабонесущих, нежных грунтах. Уплотнения на большой глубине чреваты гибелью посевов и потерями огромных прибылей. При этом исправить их вспашкой невозможно, ибо речь идёт о глубине в 1,5-2 метра.

На сегодняшний день человеку доступны 4 способа снизить удельное давление:

  1. Увеличить диаметр колёс;
  2. Использовать шины максимально низкого давления;
  3. Увеличить количество колёс;
  4. Использовать резиновые гусеничные траки.

Каждый из вариантов имеет ряд преимуществ и помогает многократно снизить удельное давление. Однако выгода у перечисленных вариантов не равнозначна. Очевидно, что к крупным гусеничным тракам на резиновой основе по эффективности не может приблизиться ни один другой способ. Какими бы огромными и широкими ни были колёса, они всё равно заметно повышают вес техники. Тем самым снижая собственную эффективность.

С гусеницами, как у John Deere 8RT вес ещё и грамотно балансируется между двигателем спереди, и намеренно увеличенной рамой для передачи веса на кормовую часть трактора.

Преимущества резиновых гусениц

Доказывать превосходство резиновых гусеничных лент просто не требуется. Достаточно самостоятельно взять свою технику, и подсчитать для неё удельное давление при всех возможных вариантах. Гусеницы будут превосходить конкурентов не в процентном сообщении, а кратно. Математику не обманешь.

Танки и по сей день оснащаются преимущественно стальными траками, так как защита в данном случае имеет первостепенной значение. При этом масса траков из металла может достигать 25-30% от всего веса танка. Это оправданный компромисс, на который пригодится идти в угоду безопасности и проходимости.

В мирном же поле, засеянном пшеницей, защита не требуется. Единственная угроза, которая может настигнуть комбайн или трактор – это крупный камень. На этот счёт ленты делают армированными, чтобы исключить любую вероятность разрыва. Вес от этого увеличивается на смехотворные значения, зато повреждения практически исключаются.

В итоге на мощный трактор, оснащённый резиновыми траками можно водрузить многотонное прицепное оборудование. При этом не переживая о возможном повреждении структуры почвы, и уж тем более уплотнениях на большой глубине.

Даже если колёсный трактор оснащён множеством колёс на одной оси, его опора распределяется недостаточно равномерно, а сама тяговая мощь существенно падает. В результате многоколёсные тракторы-монстры оснащаются экспериментальными двигателями по 800 и более лошадиных сил. При этом гусеничный трактор, который на 25% слабее этих монстров в сырой мощи, выполняет ту же работу гораздо увереннее и с большей непринуждённостью. Для примера можно взять “малыша” Challenger MT800.

enduratracks.com

Фундамент. Расчет нагрузки на грунт.

Многие пытаются рассчитывать конструкцию фундамента, взяв за основу характеристики грунтов. Я также пытался это сделать, да только тема эта по грунтам для меня оказалась чересчур обширная. Скальные, крупнообломочные, глинистые да песчаные... вобщем, достаточно только взглянуть на ГОСТ 25100-95 (Грунты. Классификация.), как осознаешь, что львиная доля всех этих знаний мне и не нужна вовсе. А где же из этого нагромождения информации то, что мне нужно?

И я опять пошел по пути упрощения. Не надо мне изучать грунты. Давай-ка я сначала определю, сколько будет весить моя конструкция, мой дом, который я намерен построить. А потом уже буду посмотреть, выдержит ли земля участка это строение, или он провалится в нее по крышу.

Вобщем, поехали. Сначала считаю вес фундамента. Беру за основу сплошной монолит, железобетон. Поскольку мне нужен цокольный этаж, то и фундамент у меня будет ленточный и никакой другой. Ведь лента фундамента - это часть стены цокольного этажа.

Короче, Высота фундамента пусть будет 1,5 метра. Ширина ленты - 0,3 м. Габариты дома - 9 х 9 метров. Башенок всяких, верандочек и фигурных крылечек не предусматриваю, я вообще противник всего этого, поскольку живу не в Африке. Потому и дом строго квадратный, чтобы уменьшить теплопотери. И что же получается? 9 * 4 * 0,3 * 1,5 = 16,2 кубометра.

К этому добавлю еще подошву шириной 0,5 м и высотой 0,1 м. 9 * 4 * 0,5 * 0,1 = 1,8 кубометра. И вот, в итоге 16,2 + 1,8 = 18 кубометров бетона. Беру удельный вес 2500 кг/м3 и множу на объем 18 м3. Получается 45000 кг. Внушительно, ничего не скажу.

А еще стены. Это примерно 20 рядов по 60 газобетонных блоков, каждый из которых весит 16 кг. 20 * 60 * 16 = 19200 кг. Нормально. Вес раствора для кладки и прочей аммуниции типа арматуры не считаю, ведь есть еще оконные проемы да дверные, которых не учитывал. Да и не диссертацию пишу, право.

Что дальше? Перекрытия, конечно. У меня они деревянные, а удельный вес сосны - 500 кг/м3. Не буду вдаваться в подробности, просто скажу, что каждое из двух перекрытий у меня весом около 3000 кг. Но есть одно НО: нижнее перекрытие опирается не только на стены, оно опирается и на пол цокольного этажа через перегородки в нем. А верхнее перекрытие опирается также на перегородки, стоящие на нижнем перекрытии. Так что я, пожалуй, возьму в расчет только половину веса перекрытий. Только 3000 кг.

А мебель и всю утварь, включая жильцов, вообще не буду учитывать. Веса немного, да и опора для всего - перекрытия. Гораздо больше будут значить крыша и снеговая нагрузка. По моим расчетам, опять же без подробностей здесь, стропильная система вкупе с обрешеткой, фронтонами и профнастилом весит до 3500 кг.

А вот снеговая нагрузка... При той крутизне скатов, что я запланировал, ее вообще-то и не должно быть, да и крышу ориентирую так, чтобы ветрами не наметало, а сдувало. Для того, чтобы выбрать нужную ориентацию, не одну крышу в округе проанализировал. Но все же, чем черт не шутит! Положу-ка я для расчетов еще и полуметровый слой снега на крышу.

Крыша приличная, площадь у нее около 150 квадратных метров, а полуметровый слой снега на ней будет весить... ух ты! 30 тонн! Ладно, принято. Считаем все вместе: Фундамент: 45000 кг. Стены: 19200 кг. Перекрытия: 3000 кг. Крыша: 3500 кг. Снег: 30000 кг.

Итого? Итого получается 100700 кг. Это все увеличиваю еще в полтора раза для надежности и в качестве результата принимаю общий вес в 150 тонн.

Вот. Теперь самое интересное. Какая там у меня площадь подошвы фундамента? 9 * 4 * 0,5 = 18 м2, или 180000 см2. Теперь прикинем, какой вес давит на каждый квадратный сантиметр подошвы: 150000 / 180000 = 0,83 кг/см2.

А теперь еще интереснее. Посмотрим на таблицы, в которых указана допустимая нагрузка на разные грунты.

Расчетные сопротивления R0 крупнообломочных грунтов

Крупнообломочные грунты

R0 (кг/см2)

Галька или щебень с заполнителем:

песчаным

6,0

пылевато-глинистым

4,5

Гравий с заполнителем:

песчаным

5,0

пылевато-глинистым

4,0

Расчетные сопротивления R0 песчаных грунтов

Пески

Ro (кг/см2)

плотные пески

средней плотности

Крупные

4,5

3,5

Средней крупности

3,5

2,5

Мелкие

3

2

Маловлажные влажные

2,5

1,5

Пылеватые:

2,5

2

маловлажные влажные

2,0

1,5

Расчетные сопротивления R0 непросадочных глинистых грунтов

Пылевато-глинистые грунты

Коэф.пористости ?

R0 (кг/см2)

Сухой грунт

Влажный грунт

Супеси

0,3

4

3,5

0,5

3

2,5

0,7

2,5

2

Суглинки

0,3

4

3,5

0,5

3

2,5

0,7

2,5

1,8

1

2

1

Глины

0,3

9

6

0,5

6

4

0,6...0,8

5...3

3. .2

1,1

2,5

1

Расчетные сопротивления R0 просадочных глинистых грунтов природного сложения

Просадочные грунты

Плотность грунта в сухом состоянии (кг/л)

R0 (кг/см2)

Сухой грунт

Влажный грунт

Супеси

1,35

3,0

1,5

1,55

3,5

1,8

Суглинки

1,35

3,5

1,8

1,55

4,0

2,0

Расчетные сопротивления R0 насыпных грунтов

Насыпные грунты

Ко (кг/см2)

слабой влажности

повышенной влажности

Насыпи, возведенные планомерно и с послойным уплотнением

2,5...1,8

2,0...1,5

Отвалы грунтов и отходов производства:

-с уплотнением

2,5...1,8

2,0...1,5

-без уплотнения

1,8...1,2

1,5...1,0

Свалка грунтов и отходов производства:

-с уплотнением

1,5...1,2

1,2...1,0

-без уплотнения

1,2...1,0

1,0...0,8

И что в этих таблицах? А я вижу в этих таблицах, то мне абсолютно до фонаря, какой у меня грунт. Любой выдержит! Так на кой ляд, спрашивается, рыться в ГОСТах и справочниках, отмерять количество крупных фракций в моем песке и гравии, количество мелких фракций, взвешивать все это, чтобы определить, какой у меня грунт? Хотя, и так на взгляд понятно, что это песок со значительным количеством гравия. Какого значительного? Да не все ли равно!

Поделитесь этой страницей со своими друзьями:

sebestroj.ru

Давление на поверхность

Калькулятор рассчитывает давление оказываемое телом заданной массы на поверхность заданной площади в гравитационном поле.

Приведем определение давления из Википедии. Давление — физическая величина, равная силе F, действующей на единицу площади поверхности S перпендикулярно этой поверхности. В данной точке давление определяется как отношение нормальной составляющей силы, действующей на малый элемент поверхности, к его площади:

Среднее давление по всей поверхности есть отношение силы к площади поверхности:

Для тела, находящегося в гравитационном поле, сила, действующая на площадь, известна — это его вес, или , где g — ускорение свободного падения, метр, на секунду в квадрате.

Таким образом, итоговая формула давления тела на поверхность:

По умолчанию значение g в калькуляторе равно 9.80665, что примерно соответствует гравитационному полю Земли. Значение площади примерно соответствует площади подошв взрослого человека. Ответ выдается в метрических единицах, паскалях, ну и для удобства в некоторых других единицах измерения давления, используемых в калькуляторе Конвертер единиц давления

Точность вычисления

Знаков после запятой: 2

planetcalc.ru

Нормативное давление на грунты основания

21.07.2017

Как было указано ранее, расчет оснований по деформации является обязательным для всех сооружений.Совсем избежать осадок невозможно. Любое основание под сооружением дает осадку, так как нагрузка сооружения оказывает влияние даже на скальные грунты, поскольку сила, действующая на основание, неизбежно вызывает какую-то деформацию. Ho осадки на скальных грунтах настолько малы, что ими можно пренебречь, тогда как здания на слабых основаниях могут осесть на десятки сантиметров.Следует иметь в виду, что для большинства сооружений важен не столько размер осадок, сколько характер их распределения по основанию. Так, неравномерные осадки под стенами здания могут вызвать в них трещины. В отдельных случаях возможен и перекос всего здания.Равномерные осадки оснований не опасны для нормальной службы зданий и сооружений, если основания оказывают достаточное сопротивление нагрузке сооружений.Расчет по деформациям прямоугольных в плане зданий с кирпичными и крупноблочными несущими стенами высотою не более 6-и этажей, можно заменить более простым расчетом по нормативному давлению на грунт, который сводится к выполнению следующего условия:где pср — среднее давление на грунт от нормативных нагрузок, найденное в соответствии с указаниями, сделанными выше;Rн — нормативное давление на грунт основания (сопротивление).Для расчета внецентренно нагруженных фундаментов необходимо выполнение следующего условиягде Pmax — наибольшее краевое давление.При этом основание должно иметь однородное горизонтальное напластование грунтов, сжимаемость которых по глубине до 5 м от подошвы фундаментов не увеличивается.В качестве нормативного давления в нормах принята величина среднего давления на основание, при которой глубина распространения областей предельного равновесия грунта составляет одну четвертую часть ширины подошвы фундамента. Это давление определяется по формуле (59) при нормативных значениях фн и сн углов внутреннего трения и удельного сцепления:где А, В, D — коэффициенты, определяемые по табл. 20 в зависимости от ср;h — глубина заложения подошвы фундамента, м;уо — объемный вес грунта, залегающего выше подошвы фундамента, т/м3;b — меньшая сторона прямоугольной подошвы фундамента, м.При наличии подвальных помещений нормативное давление на грунт основания определяется по формуле:где hп — приведенная глубина заложения фундамента в подвальном помещении, определяемая по формуле (рис. 60):где d1 — толщина слоя грунта выше подошвы фундамента, м;d2 — толщина конструкции пола под-вала, м;уп — объемный вес конструкции пола подвала, т/м3.Пример 17. Определить нормативное давление на основание из суглинка с коэффициентом пористости е = 1 и влажностью на границе раскатывания Wр = 16% под фундаментом шириной b = 3 м, заложенным на глубине h = 1,8 м.Решение.По табл. 8 находим фн = 18°; сн = 0,08 кг/см2 = 0,8 т/м2, а по табл. 20 коэффициенты А = 0,4; В = 2,7; D = 5,3.По формуле (60) находится нормативное давление:Пример 18. Определить нормативное давление на основание из мелкого песка с коэффициентом пористости е = 0,6 и объемным весом уо = 1,8 т/м3. Глубина заложения фундамента h = 3 м, ширина подошвы b = 1,2 м, фундамент имеет подвал (рис. 60).Толщина слоя грунта выше подошвы фундамента d1 = 0,4 м; толщина конструкции пола подвала d2 = 0,1 м при объемном весе уп = 2,3 т/м3.

Решение.

По табл. 8 находим фн = 36° и сн = 0,04 кг/см2 = 0,4 т/м2, а затем по табл. 20 A = 1,8; В = 8,2; D = 10.Определяем приведенную глубину заложения фундамента в подвальном помещении:Нормативное давление на основание находится по формуле (63):

sv-barrisol.ru

Расчет нормативного давления на грунт. Отдельный фундамент

В большинстве случаев расчет оснований по деформации сводится к проверке осадок и их неравномерностей, поэтому важно при проектировании установить величины осадок с учетом совместной работы грунтов основания и конструкций сооружения, включая фундаменты. В таком случае представится возможным определить дополнительные усилия, возникающие в несущих конструкциях сооружения из-за неравномерной деформации основания.

Вследствие трудностей оценки жесткости всего сооружения обычно совместную работу основания и несущих конструкций учитывают преимущественно при расчете гибких фундаментов, работающих на изгиб. Такой расчет производится с использованием теории расчета балок и плит на упругом основании. При проектировании же отдельных и ленточных фундаментов под стены зданий чаще всего ограничиваются определением деформации основания без учета жесткости надфундаментных конструкций.

Как правило, при расчете деформаций допускается принимать распределение напряжений в толще неоднородных (слоистых) оснований по теории однородного изотропного, линейно деформируемого тела. Известно, однако, что грунты оснований обладают приблизительно линейной зависимостью между деформациями и напряжениями только до возникновения пластических деформаций (деформаций сдвигов) под фундаментами. Поэтому среднее давление по подошве фундамента от нормативных нагрузок прежде всего ограничивается условной величиной нормативного давления RH, определяемого исходя из развития зон пластических деформаций при равномерно распределенной нагрузке на глубину четверти ширины подошвы фундамента.

www.groont.ru


Смотрите также

Сайт о Бане - проект, посвященный строительству, эксплуатации и уходу за русской баней. Большой сборник статей, который может быть полезен любому любителю бани

Содержание, карта сайта.