Из чего состоит дерево химия


Химический состав древесины

Древесина (абсолютно сухая) в основном состоит из трех химических элементов: углерода — 49,5%; кислорода — 44,2;

водорода — 6,3%. Из этих химических элементов образованы сложные органические вещества, входящие в состав клеточной ткани древесины, целлюлоза, лигнин, гемицеллюлоза, которые составляют 90-95% массы абсолютно сухой древесины. Остальные 5-10% составляют экстрактивные вещества, т.е. извлекаемые из древесины различными растворителями. Главные из них — дубильные вещества и смолы. Кроме того, в древесине содержится 0,2-1,7% массы неорганических веществ, получаемых из золы после сжигания древесины. Это соли кальция, калия, натрия, магния. Кора и листья дают больше золы, чем стволовая древесина .

Целлюлозу из древесины можно получить, отделив ее от лигнина и гемицеллюлозы. Отделение целлюлозы от этих веществ основано на ее высокой стойкости к химическим соединениям и в частности к растворам кислот и щелочей, в которых менее стойкие лигнин и гемицеллюлоза переходят в раствор. Древесную щепу варят в котлах в кислотной (сульфитный способ) или щелочной (сульфатный способ) среде при высокой (135-175°С) температуре и высоком (0,5МПа) давлении. После нескольких часов варки целлюлозу промывают, очищают, отбеливают. Целлюлоза исходный материал для производства бумаги, ваты, искусственных волокон (вискозный шелк, штапель), искусственных мехов и кожи, фотои кинопленок, лаков, целлофана, пластмасс, пороха и других материалов.

Гемицеллюлозу и лигнин, перешедшие в раствор при варке, после дальнейшей химической и гидролизной переработки используют для получения этилового спирта, кормовых дрожжей, углекислоты, сухого льда, ванилина, фурфурола. Этиловый спирт является основным сырьем для получения искусственного каучука, уксуса, эфира.

Смола находится в стволе хвойных пород, имеет слабую связь с тканью древесины и сравнительно легко извлекается. Извлечение смолы выполняют либо подсочкой растущего дерева, либо экстракцией сильно осмоленной древесины. При подсочке делают поверхностные раны на стволе живого дерева, из которых вытекает смола живица. В результате переработки живицы получают канифоль и скипидар. При экстракционной переработке древесины смолистые вещества сначала растворяют в бензине, а затем полученный экстракт разгоняют на канифоль и скипидар.

Канифоль используется для получения мыла, изготовления лаков, красок, линолеума, эфиров, а также применяют во многих отраслях (кабельной, кожевенной, нефтяной, резиновой) промышленности. Скипидар используют в медицине, применяют как растворитель для лаков и красок, а также как сырье для производства других продуктов.

Дубильные вещества танниды получают из измельченной древесины и коры экстрагированием горячей водой. Их используют в кожевенной промышленности для дубления кож, придавая ей гибкость, мягкость стойкость к гниению и набуханию. Танниды растворяются в спирте и воде; при соединении с солями различных металлов они могут образовывать красители различных оттенков от светло-желтых до иссиня-черных, применяемых для глубокого крашения древесины.

Строение древесины: особенности, элементы, химический состав

Древесина — слоисто-пористый материал растительного происхождения. Состоит из многообразных клеток, связанных между собой порами. Строение древесины сложно и совершенно. Природа создала материал с такими уникальными качествами как: твердость, низкая тепло-, звукопроницаемость, высокая прочность. Дерево с легкостью поддается обработке инструментами, хорошо склеивается. Древесина была и остается ведущим материалом для изготовления домов.

Макроскопическое строение древесины

Если на срезе заметно строение штамба невооруженным взглядом, то говорят о таком понятии, как макростроение древесины. Бывает, что не вся плоскость среза окрашена равномерно: ближе к центру она может быть темнее, а дальше — светлее. Темная часть, самая прочная, созданная из мертвых клеток ткани, является ядром, а светлая — заболонью. Клетки ядра отмирают из-за закупорки проводящих сосудов смолой. Породы древесины с такой окраской называют ядровыми (дуб, сосна, ясень, лиственница). Если срез окрашен равномерно, то такие породы являются безъядровыми (ольха, береза).

Каждый год жизни отмечается на стволе увеличением слоя древесины определенного размера, который зависит от возраста, условий жизни растения, скорости роста. Такие слои называют годичными кольцами. Они особенно ярко видны на спилах хвойных пород.

Годичное кольцо содержит два таких слоя ткани, как:

  1. Ранний мягкий. Возникает в первой половине годичной вегетации. Имеет светлую окраску. Находится у центра ствола.
  2. Поздний твердый. Создается во второй половине годичного роста. Отличается темной окраской. Располагается ближе к коре.

По каналам ранней ткани транспортируются питательные элементы к вершине и обратно. Зона позднего слоя защищает растение от механических повреждений. В комле находятся самые узкие кольца. Из-за плохих условий произрастания они могут иметь волнистость, что повышает декоративность древесной массы. Древесный материал с самыми узкими кольцами считается лучшим.

От коры по радиусу к центру растения протягиваются светлые линии, используемые для перемещения питательных элементов. Эти линии называются сердцевинными лучами. Лучи характерны для всех пород. Они отчетливо видны на срезах. Ширина лучей меняется в пределах 0,05 — 1 мм. Их размер непосредственно зависит от условий жизни растения. Сердцевинные лучи ответственны за текстуру древесной массы. Некоторые из них прерываются далеко от сердцевины. Такие лучи называются вторичными в отличие от первичных, которые доходят до нее.

На поперечном разрезе лиственных пород замечаются небольшие отверстия, которые являются сосудами растения. Они поставляют дереву воду и питание. Если в раннем слое лежат крупные сосуды, а в позднем — мелкие, то такой сосудистый рисунок соответствует кольцесосудистой материи (дуб, вяз, ясень). Она отличается прочной древесной массой. Равномерное расположение сосудов по годичному кольцу соответствует мягкой рассеяннососудистой ткани (береза, осина). Весной с некоторых деревьев (береза, сахарный клен) собирают сок, перерезая их сосуды.

Для строения хвойных пород характерны протоки, наполненных смолой. Это смоляные ходы, которые свойственны лишь некоторым хвойным деревьям. Например, пихта и можжевельник их не имеют. Смоляные ходы разных направлений создают одну смолоносную систему.

Самый центр ствола занимает сердцевина, рыхлая масса, пронизывающая растение снизу доверху. Быстро поддается разложению. Она создается в начале жизни дерева. На срезе сердцевина представляется в виде отметины, как правило, круглой формы диаметром 2 — 5 мм. Лиственные породы имеют сердцевину большей площади, чем хвойные. Наибольшую сердцевину имеет бузина.

Тонкий слизистый слой клеток, лежащих в области между корой и древесиной, именуется камбием. Он вырабатывает микроэлементы для роста древесной ткани, принимая от луба питательные элементы. Начинаясь весной, процесс синтезирования новых клеток заканчивается осенью. Этим объясняется слоистое строение древесной массы.

Микроскопическое строение древесины

Только микроскопическое строение древесины отвечает в полной мере на вопрос: что же такое древесина? Множество разнообразных клеток, скрепленных между собой — это есть древесная масса. Каждая клетка наполнена протопластом, а межклеточное пространство — сложными полимерными соединениями. Однозначные по строению и функциям клетки создают соответствующие ткани: механические (опорные), проводящие и запасающие.

Оболочка клетки создана из природных высокомолекулярных полимеров: углеводов (70 — 80%) и лигнина (20 — 30%). Углеводная часть представлена холоцеллюлозой, гемицеллюлозой и целлюлозой. Лигнин — аморфное вещество, связывающее целлюлозные волокна между собой, благодаря чему целлюлоза приобретает прочность и эластичность. Лигнин и целлюлоза пропитывают стенки клеток, вызывая их одревеснение. В результате оболочка становится жесткой, твердой, по своей прочности не уступающая железобетону.

Химический состав древесины и коры

Ткань древесной массы создана из клеток. Поэтому все химические компоненты располагаются в клеточных оболочках. Древесина состоит из минеральных и органических компонентов. К минеральным (неорганическим) веществам относятся элементы, которые остаются после сгорания древесной ткани (зола). Их величина составляет 1% от общей массы. По химическому составу эти элементы представляют собой смесь разных солей, растворимых (натрия, калия) и нерастворимых (магния, кальция, железа) в воде.

Остальную часть занимают органические составляющие, занимающие 99% общей массы. Их элементный состав содержит 49 — 50% углерода, 43 — 44 % кислорода, 6 % водорода и 0,1 — 0,3 % азота.

Органические вещества представлены в виде двух групп:

  1. Структурные компоненты, образующие структуру клетки (целлюлоза, холоцеллюлоза, гемицеллюлоза, лигнин).
  2. Экстрактивные вещества — компоненты, которые можно извлечь из древесины растворителями (экстрагировать). Они не входят в состав клеточной стенки. К ним относятся эфирные масла, красители, дубильные вещества, жиры, пектины. Древесина обязана им запахом, цветом, вкусом, сопротивлению гниению и болезням. Экстрактивные элементы составляют 3 — 5% от общей массы органических компонентов.

Химический состав лиственных пород отличается от хвойных большим содержанием структурных компонентов (гемицеллюлозы), но меньшим содержанием лигнина. В зависимости от географического места произрастания, возраста растения химический состав может меняться в пределах одной породы.

Химический состав коры отличается повышенным содержанием экстрактивных веществ, лигнина и пониженным содержанием целлюлозы. Доля неорганических веществ в общем количестве составляет 10-15 %, это в 10 раз больше, чем в древесине. Преобладающими элементами золы являются кальций (82-95 %), калий, магний.

Кора — ценное растительное сырье:

  1. Дубильные вещества незаменимы при выделке кож.
  2. Экстрактивные компоненты находят применение в медицине.
  3. Кору используют в качестве топлива.
  4. Измельченная кора служит основой корокомпостов в сельском хозяйстве.

Разные химические составы коры и древесины приводят к необходимости перерабатывать их раздельно.

Пороки древесины

Повреждения всей структуры древесины или отдельных участков, которые снижают качество и ограничивают применение, называются пороками древесины. Некоторые пороки возникают в растущем дереве, другие — при хранении или эксплуатации сырья. Качество древесной массы определяется в соответствии с видами и размерами пороков, их расположения, назначения продукции.

ГОСТ 2140-81 устанавливает классификацию пороков по следующим группам:

  1. Сучки, основания бывших ветвей.
  2. Трещины, разрывы ткани вдоль волокон.
  3. Дефекты формы ствола. К ним относятся сужение ствола, кривизна, овальность, наросты, закомелистость.
  4. Пороки строения древесины: прожилки, полоски, пятнышки.
  5. Химические окраски. Они возникают в заготовленном сырье в результате окисления дубильных веществ.
  6. Грибные повреждения. Их вызывают грибы, которые являются растительными организмами, развивающимися из спор.
  7. Повреждения насекомыми, птицами. Такой порок ухудшает декоративность и физико-механические качества.
  8. Инородные включения.
  9. Покоробленность. Порок возникает в результате обработки материала.

Некоторые из этих пороков просто понижают сортность материала, другие не имеют особенного значения, а третьи могут отправить древесину на дрова.

Основные части дерева

Дерево — многолетнее растение, состоящее из таких компонентов как:

Каждый элемент выполняет конкретную задачу и имеет свое предназначение для хозяйственных нужд. Строение деревьев лиственных пород не отличается от строения хвойных.

Ствол – это доля дерева, расположенная выше корней. В густом лесу только с его помощью ветви могут достичь света. По штамбу вверх и вниз перемещаются элементы питания и вода. Сверху ствол заканчивается тонкой вершиной. Нижняя зона, расположенная сразу над корнем, называется комлем. Ствол — основной материал для строительства. Он используется как источник тепла для нужд потребителей, служит сырьем для производства композитных материалов (ДСП, МДФ), скипидара, канифоли.

Снаружи штамб покрыт оболочкой: корой, которая является кожухом, защищающим дерево. Строение и свойства коры имеют свои особенности. Она включает в себя два слоя: наружный корковый или пробковый, состоящий из мертвых клеток луба, и внутренний лубяной, являющийся главной артерией ствола. Корковый слой оберегает древесную массу от повреждений.

Крона — комплекс веток с листьями или хвоей, растущих на стволе. В «зеленой» кроне происходит сложный процесс фотосинтеза, направленный на создание элементов питания. Попутно под действием света выделяется кислород, обогащающий атмосферу. Дополнительную энергию в виде солей минеральных и органических кислот поставляют корни. Избыток жидкости крона выделяет в атмосферу.

Использование кроны для хозяйственных нужд невелико, несмотря на ценность материала. Измельченные листья или хвоя используются как витаминная добавка для корма скота или птицы. После сгорания веток получается зола, являющаяся ценным удобрением. Из раздробленных веток садоводы изготавливают мульчу для защиты корней растений от мороза.

Строение дерева таково, что важны все элементы. Но корни — главная составляющая. Если по каким-то причинам гибнут крона и штамб, то дерево может возродиться благодаря корням. Корневая система отличается сложным строением. Главный корень разветвляется на мелкие втягивающие корешки. Они собирают питательные элементы с большой площади и поставляют их всем зонам. Обширная корневая система поддерживает растение вертикально. Корни не служат топливом, не используются для хозяйственных нужд.

Химический состав древесины: хвойных и лиственных пород

Доброго времени суток уважаемые читатели Блога Андрея Ноака! Давайте поговорим сегодня про химический состав древесины, а это значит что мы рассмотрим из каких веществ она состоит.

Строение древесины

Строение древесины можно рассматривать как с физической, так и с химической точки зрения.

Основными составляющими древесины являются целлюлоза, гемицеллюлоза и лигнин, которые в свою очередь состоят из химических элементов:

Взаимодействуя между собой целлюлоза, гемицеллюлоза и лигнин, являются цементирующими веществами клеточных стенок, и определяют емкость стенок, их механическую прочность и эластичность. Что в конечном итоге создает конкретные свойства древесины. К дополнительным компонентам древесины относят эфирные масла, смолы, крахмал, жиры, дубильные вещества и даже минеральные вещества.

Химический состав.

Целлюлоза: вещество клеточной стенки, придающее дереву прочность на растяжение.нитевидные, длинно цепочечные макромолекулы в древесине содержится около 40-55%
Гемицеллюлоза: вещество являющееся пластификатором в древесине, придает дереву пластичность, прочность при скреплении клеток. В зимний период времени является питательным веществом для дерева.короткая цепь разветвленных макромолекул в древесине содержится около 15-35%
Лигнин: Вещество являющееся наполнителем в древесине. Придает цвет древесине, создает герметичность клеточных стенок. Придает древесине прочность на сжатие и на разрыв.При повышении давления и температуры, происходит химическая реакция лигнина и он выступает в качестве природного клея (так делают пеллеты)трехмерная макромолекула, содержание около 20-30%
Пектин цементирующее вещество, находящееся между стенками клетоктрехмерная макромолекула
Другие ингредиенты: эфирные масла и смолы, крахмал и жиры, танины и фенольные вещества, минералыНеорганические и органические ингредиенты, которые влияют на биологические, физические и химические свойства древесины содержание около 1-7%

Целлюлоза представляет собой полисахарид с длинной цепью молекул глюкозы. Целлюлоза образуется на основе водородных связей в элементарные волокна. Около 1000 — 10000 молекул глюкозы образуют длинную нитевидную, неразветвленную молекулу (поз. 5).

Такую молекулу часто называют полимером или макромолекулой (поз. 5). Параллельные, соседние молекулы цепи называют мицеллы (поз. 4). От 5 до 20 фибрил образуют микрофибриллу (поз. 2). В свою очередь микрофибриллы (поз. 2) образуют макрофибриллы (поз. 1). Между волокнами может храниться вода, лигнин и гемицеллюлоза.

Лигнин представляет собой трехмерное, ароматическое соединение углеводорода. Он в основоном расположен в стенках древесных растений.

А вот взаимодействие между собой лигнина, целлюлозы и гемицеллюлозы.

 Удачи и до новых встреч, с вами был Андрей Ноак!

Химический состав древесины

Древесина
представляет собой очень сложный комплекс органических соединений, образующих как стенки ее организованных элементов — клеточек, так и те вещества, которые как бы соединяют эти клетки между собой (межклеточное вещество, срединная пластинка).

Обычно древесиной называют тот материал, из которого построены ствол, ветки и корни лесных и кустарниковых пород, что неправильно, так как анализ злаков, масляничных и других растений показывает, что их растительная ткань состоит в основном из тех же основных элементов, как и древесина хвойных или лиственных пород.

В табл. дан химический анализ хвойных и лиственных пород.

Составные части древесины

Образцы древесины

Ель

Сосна

Осина

1

2

1

2

1

2

Целлюлоза (по Кроссу и Бивену), свободная от пентозанов

58,8

59,3

56,5

57,6

52,2

52,0

Лигнин (по Кенигу)

28,0

28,1

27,0

26,8

21,1

21,4

Пентозаны (по Толленсу)

10,5

9,5

10,4

11,0

22,7

22,9

Маннан (по Шоргеру)

7,5

7,7

7,0

7,1

нет

нет

Галактаны (по Шоргеру)

2,6

2,6

1,5

1,4

0,6

0,7

Эфирная вытяжка

1,0

1,1

4,9

3,2

1,5

1,4

Вещества, растворимые в горячей воде

1,7

1,8

2,9

2,3

2,3

2,5

Зола

0,2

0,2

0,2

0,2

0,27

0,25

 

Содержание в некоторых растениях гемицеллюлоз (пентозан) иногда превышает содержание их в древесных породах (в %):

 

Подсолнечная лузга 37
Кукурузные кочерыжки 36
Овсяные отруби 32
Солома ржи 29
Гречневая шелуха 27
Хлопковая шелуха 25
Льняная костра 21
Костра кендыря 21

 

Целлюлоза, гемицеллюлозы и лигнин входят в состав всех высокоорганизованных растений, составляя основной остов всей их растительной массы. По содержанию основных составных частей, как видно из табл. 1, лиственная древесина ближе к злакам, чем к хвойным.

Помимо целлюлозы, гемицеллюлоз и лигнина, находящихся между собой в большей прочной химической связи, в различных растений находится целый ряд других веществ, соединенных с ними или адсорбционно или же заполняющих внутренность клеток, сосудов и свободные промежутки между клетками.

Таковы смолы, жиры, воски, белковые, красящие, дубильные вещества, эфирные масла, глюкозиды, алкалоиды. Содержание этих веществ, не составляющих основной остов растения, иногда бывает настолько велико, что их древесина используется именно для получения этих веществ, как например сосны (пневый осмол), дуба, ивы и других танидоносных растений, каучуконосов, красильных деревьев и т. п.

В отличие от основных эти вещества легко извлекаются действием теплой или горячей воды или же органическими растворителями (спиртом, эфиром, бензолом и др.).

Еще до сих пор широко распространено ошибочное и вредное для промышленного использования древесины мнение, что основные ингредиенты: целлюлоза, гемицеллюлозы и лигнин находятся в растительной ткани как бы в случайной смеси не связанными химически между собой. Гемицеллюлозы и лигнин являются как бы «спутниками» целлюлозы (К. Гесс) и по данным некоторых авторов даже происшедшими путем изменения или разрушения целлюлозы. Е. Schmidt рядом работ (с своими сотрудниками) показал, что при осторожном удалении лигнина остается углеводная часть, названная им «скелетным веществом» (Skelet-substanz), отдельные части которого находятся в стехиометрическом соотношениях между собой.

То же было доказано Рункелем и Ланге, Хеглундом (Hagglund), Риттером и Куртом, а для русских пород (сосны, осины и лиственницы) — Жеребовым и Плугнянской. Курт и Риттер доказали кроме того, что нагреванием с 1%-ной серной кислотой их «холоцеллюлоза», соответствующая скелетному веществу Шмидта, гидролизуется, оставляя углеводное соединение, С. В. — целлюлозу, т. е. ту связанную с пентозанами целлюлозу, которая получается при выделении ее из древесины по стандартному методу Cross-Bewon.

Жеребовым и Палеевым доказано, что углеводы ржаной соломы (Secale cereale) находятся в таком же стехиометрическом соотношении между собой, как и в древесине.

Нужно думать, что и лигнин в противоположность мнению многих химиков также находится в химической связи с остальными углеводами. Если по внешнему виду дерево, солома злаков или других однолетних растений несравнимы между собой, то древесина их растительной ткани чрезвычайно близки между собой как по химическому составу, так и по анатомии, строению, в особенности по сравнению с лиственными породами.

Как та, так и другая состоят одинаково, наряду с большим количеством сосудов и паренхимных клеток, из длинных волокнистых клеток, способных по выделении их сплетаться, свойлачиваться между собой, образовывать сплошные, плотно сомкнутые листы. Это сходство как в химическом так и в механическом отношении делает их одинаково пригодными для удовлетворения различных нужд народного хозяйства.

Путем гидролитического и пирогенетического процессов из той или другой древесины можно получить: винный спирт, метиловый спирт, ацетон, фурфурол, органические кислотыты (уксусную, муравьиную, лимонную, молочную, янтарную, щавелевую), ксилозу, кормовые дрожжи, целлюлозу, целлюлозные эфиры, бумагу, картон, строительные доски, изоляционные плиты, активированный уголь и другие продукты.

Солома сельско-хозяйственных районов может вполне заменить древесину лесных районов не только для химической промышленности, но и для строительной (фанера, изоплиты и др.).

Дальнейшее углубленное изучение химического комплекса и химической связи между отдельными ингредиентами позволит более полно использовать ее и получать новыех продукты для народного хозяйства. Состав различных древесин по количеству содержащихся в них отдельных химических ингредиентов различен, и это разнообразие еще более увеличится, если уточнить состав содержащихся в них гемицеллюлоз (маннаны, фруктаны, галактаны, арабаны, ксиланы), но их элементарный состав поражает своим сходством. Колебания в содержании углерода и водорода находятся почти в пределах ошибок анализа.

Древесина хвойных и лиственных пород

Древесина хвойных и лиственных пород, самые разнообразные по своей анатомии структуре и по своим физическим, механическим и химическим свойствам, имеют один и тот же элементарный состав. Интересно, что тот же состав имеет и луговое сено, т. е. смесь очень разнообразных растений.

Это показывает, что первичное вещество, образующееся на месте формирования растительной ткани из полученных путем фотосинтеза и доставленных к месту постройки материалов, одно и то же и только путем дальнейших биохимических воздействий оно разлагается на различные химические комплексы, характерные для той или другой древесины.

Кроме основных элементов С, Н и О в ней находится в небольших количествах азот и минеральные вещества. Азот содержится в виде белковых веществ (омертвевшая протоплазма) в полости клеток и частично в клеточных стенках, вероятно в химических соединении с их основной тканью. В некоторых растений и частях этих растений (напр. в коре) находится повышенное содержание N благодаря присутствию в них алкалоидов. Содержание минеральных веществ невелико, оно колеблется в пределах 0,3—1,5%, но состав их крайне разнообразен, что зависит от влияния почвенных, климатических и других условий произрастания.

Но не одно только богатство почвы теми или другими солями обусловливает их содержание в произрастающей на данной почве: это доказывается уже тем, что в образующейся ткани содержание золы в 10— 15 раз превышает ее содержание в взрослой древесины, а также тем, что при недостатке в почве coли, необходимой для образования новой ткани, дерево развивает свою корневую систему в направлении наилучшего улавливания этой соли из протекающих грунтовых вод (сосна в ландах или на дюнных отложениях Волги).

Наличие в золе марганца (Мп203), доходящее до 8—12%, тогда как в почвах его содержание незначительно, или же большее содержание железа в молодых образующихся тканях несомненно указывает на значительную роль минеральных веществ для образования того или иного вида древесины.

Древесина: химические свойства

Химический состав древесины

Древесина состоит преимущественно из органических веществ (99% общей массы). Элементный химический состав древесины разных пород практически одинаков. Абсолютно сухая древесина в среднем содержит 49% углерода, 44% кислорода, 6% водорода, 0,1-0,3% азота. При сжигании древесины остаётся её неорганическая часть - зола. В состав золы входят кальций, калий, натрий, магний и другие элементы.

Перечисленные химические элементы образуют основные органические вещества: целлюлозу, лигнин и гемицеллюлозы.

Целлюлоза - природный полимер, полисахарид с длинной цепной молекулой. Формула целлюлозы (C6h20O5)n, где n - степень полимеризации, равная 6000-14000. Это очень стойкое вещество, нерастворимое в воде и обычных органических растворителях (спирте, эфире и др.), белого цвета. Пучки макромолекул целлюлозы - тончайшие волоконца называются микрофибриллами. Они образуют целлюлозный каркас стенки клетки. Микрофибриллы ориентированны преимущественно вдоль длинной оси клетки, между ними находится лигнин, гемоцеллюлозы, а также вода.

Лигнин - полимер ароматической природы (полифенол) сложного строения; содержит больше углерода и меньше кислорода, чем целлюлоза. Именно с этим веществом связан процесс одревеснения молодой клеточной стенки. Лигнин химически нестоек, легко окисляется, взаимодействует с хлором, растворяется при нагревании в щелочах, водных растворах сернистой кислоты и её кислых солей.

Гемицеллюлозы - группа полисахаридов, в которую входят пентозаны (C5H8O4)n и гексозаны (C6h20O5)n. Формула гексозанов на первый взгляд идентична формуле целлюлозы. Однако степень полимеризации у всех гемицеллюлоз гораздо меньше и составляет 60-200. Это свидетельствует о более коротких цепочках молекул и меньшей стойкости этих веществ по сравнению с целлюлозой.

Кроме основных органических веществ, в древесине содержится сравнительно небольшое количество экстрактивных веществ (таннидов, смол, камедей, пектинов, жиров и др.), растворимых в воде, спирте или эфире.

В качестве сырья древесину потребляют три отрасли химической промышленности: целлюлозно-бумажная, гидролизная и лесохимическая. Целлюлозно-бумажная промышленность вырабатывает целлюлозу для изготовления бумаги, картона и целого ряда целлюлозных материалов (производных целлюлозы), а также древесноволокнистых плит.

Основываясь на высокой химической стойкости целлюлозы, путём воздействия различных агентов на древесину переводят в раствор сопровождающие её менее стойкие вещества. Различают три группы способов промышленного получения целлюлозы: кислотные, щёлочные и нейтральные. Выбор того или иного способа зависит в основном от породного состава перерабатываемого древесного сырья.

К группе кислотных способов относятся сульфитный и бисульфитный. При сульфитном способе в качестве сырья используется древесина малосмолистых хвойных (ели, пихты) и ряда лиственных пород. Бисульфитный способ позволяет использовать для получения целлюлозы древесину практически любых пород.

К группе щёлочных способов относятся сульфатный и нейтральный. Наибольшее распространение получил сульфатный метод. Варка щепы ведется в растворе едкого натра и сернистого натрия. Сульфатный способ позволяет получать более прочные волокна. К достоинствам этого способа относится меньшая продолжительность варки, а также возможность осуществлять процесс по замкнутой схеме (путем регенерации щелока), что уменьшает опасность загрязнения водоемов. Этим способом получают более половины производимой в мире целлюлозы, так как он позволяет использовать древесину любых пород.

Нейтральный - способ получения целлюлозы из древесины лиственных пород, при котором варочный раствор содержит вещества (моносульфиты), имеющие реакцию, близкую к нейтральной.

Широкое применение находят производные целлюлозы. При взаимодействии целлюлозы с растворами едкого натра, азотной и серной кислот или уксусным ангидридом можно получить искусственные ткани (штапель, вискозный и ацетатный шёлк), кордонное волокно для изготовления автомобильных и авиационных шин, целлофан, целлулоид, кино- и фотоплёнки, нитролаки, нитроклеи и другие продукты.

При взаимодействии водных растворов кислот с древесиной происходит гидролиз целлюлозы и гемицеллюлоз, которые превращаются в простые сахара (глюкозу, ксилозу и др.) Эти сахара можно подвергать химической переработке, получая ксилит, сорбит и другие продукты. Однако гидролизная промышленность в основном ориентируется на последующую биохимическую переработку сахаров.

Реакция гидролиза происходит при довольно высокой температуре (150-190°С). При охлаждении гидролизата (водного раствора простых сахаров) образуются пары, из конденсата которых получают фурфурол. Он применяется в производстве пластмасс, синтетических волокон (нейлона), смол, изготовления медицинских препаратов (фурацилина и др.), красителей и других продуктов.

При дальнейшей переработке гидролизата получают кормовые дрожжи, этиловый спирт (этанол), углекислый газ. Этанол получают только из хвойной древесины, используют как растворитель и, всё больше, как топливо.

При нагревании древесины без доступа воздуха происходит пиролиз. В результате пиролиза образуется уголь, жижка и газы.

Древесный уголь, отличающийся высокой сорбционной способностью, применяют для очистки промышленных растворов, сточных вод, в производстве сахара, при выплавке цветных металлов, при изготовлении медицинских препаратов, полупроводников, электродов и для многих других целей.

Жижка - раствор продуктов разложения, используется в производстве антисептиков, фенолов, уксусной кислоты, метилового спирта, ацетона. Газы, образующиеся при пиролизе древесины, используют в качестве топлива.

Сырьём для лесохимической промышленности помимо низкокачественной древесины являются экстрактивные вещества. Добыча смолы (живицы) из хвойных пород деревьев и кустарников достигается путём подсочки. Для этого на поверхности стволов сосны или кедра осенью наносят специальную рану (карру), из которой живица вытекает в конический приёмник. Переработка живицы осуществляется на лесохимических предприятиях, где происходит отгонка с водяным паром летучей части - скипидара и уваривание канифоли.

Скипидар широко применяется как растворитель в лакокрасочной промышленности для производства синтетической камфары. Камфара используется в производстве целлюлозы, лаков и киноплёнки. Канифоль применяют в производстве каучука, бумаги, нитролаков, электроизоляционных материалов и др.

Дубильные вещества (танниды), используемые при выделке кож получают из коры ивы, ели, лиственницы, пихты, а также из древесины дуба и каштана.

http://www.wood.ru/ru/lpshim.html

Химический состав древесины и коры. Характеристика органических веществ

Древесина состоит преимущественно из органических веществ (99 % общей массы), в состав которых входят углерод (С), водород (Н), кислород (О) и немного азота (N).

Элементный химический состав древесины разных пород практически одинаков. Абсолютно сухая древесина в среднем содержит 49-50 % углерода, 43-44 % кислорода, 6 % водорода и всего лишь 0,1-0,3 % азота. Элементный химический состав древесины ствола и ветвей различается мало. При сжигании древесины остается ее неорганическая часть — зола (0,1-1 %). В состав золы входят кальций, калий, натрий, магний; в меньших количествах фосфор, сера и другие элементы. Большая часть (75-90 %) образованных ими минеральных веществ нерастворима в воде. Среди растворимых веществ преобладают карбонаты калия и натрия, а среди нерастворимых — соли кальция.

Больше золы дает кора. Так, стволовая древесина дуба образовала при сгорании 0,35 % золы, а кора — 7,2 %. Древесина ветвей образует больше золы, чем древесина ствола: ветви березы дают при сгорании 0,64 % золы, а стволовая древесина — 0,16 %. Древесина верхней части ствола дает больше золы, чем нйжняя.

Основными органическими веществами древесины являются целлюлоза, лигнин и гемицеллюлозы, которые, как уже отмечалось, входят в состав клеточных стенок. Содержание указанных веществ зависит от породы. По данным А. В. Бурова и А. В. Оболенской, в древесине хвойных пород целлюлозы 35-52%, лигнина 25-30 %, гемицеллюлоз 22-30 % (в том числе пентозанов 5-11 % и гексозанов 9-13%). В древесине лиственных пород несколько меньше целлюлозы (31-50 %) и лигнина (20-28%), но больше гемицеллюлоз (19-35 %), причем среди гемицеллюлоз преобладают пентозаны (16-29 %) и гораздо меньше гексозанов (до 6 %).

Целлюлоза — линейный полимер, полисахарид с длинной гибкой цепной молекулой. Формула целлюлозы (С6Н10О5)n, где n — степень полимеризации, составляющая 5000-10000. Это очень стойкое вещество, не растворимое в воде и обычных органических растворителях (спирте, эфире и др.), белого цвета, плотностью 1,54-1,58 г/см3.

Гемицеллюлозы — группа полисахаридов, в которую входят пентозаны (С5Н8O4)n, содержащие пять атомов углерода в элементарном звене, и гексозаны (С6Н10О5)n, имеющие, как и целлюлоза, шесть атомов углерода в звене. Однако у всех гемицеллюлоз степень полимеризации гораздо меньше (60-200), что свидетельствует о более коротких, чем у целлюлозы, цепочках молекул.

Лигнин — аморфный полимер ароматической природы (полифенол) сложного строения; содержит больше углерода и меньше кислорода, чем целлюлоза. Лигнин химически менее стоек, легко окисляется, взаимодействует с хлором, растворяется при нагревании в щелочах, водных растворах сернистой кислоты и ее кислых солей. Цвет лигнина (от светло-желтого до темно-коричневого) зависит от способа его выделения из древесины; плотность 1,25-1,45 г/см3.

Кроме основных органических веществ в древесине содержится сравнительно небольшое количество экстрактивных веществ (таннинов, смол, камедей, пектинов, жи

Simple English Wikipedia, бесплатная энциклопедия

Древесина является основным веществом деревьев. Он в основном образован сосудами ксилемы, которые переносят воду вверх по растению. Из дерева делают здания и мебель, а также для искусства. Дрова - это топливо. Бумага изготавливается из древесных волокон. Древесина - возобновляемый ресурс, хотя в последние столетия его стало меньше.

Дерево очень трудно резать, но оно также очень прочное. Лесоруб - это человек, который рубит деревья.После падения дерева древесину в нем можно разрезать на длинные прямые части, называемые пиломатериалами. Затем пиломатериалы можно использовать для изготовления столбов или соединить с помощью гвоздей, шурупов или даже клея, чтобы сделать деревянные рамы для других форм.

Древесина бывает разных пород. Дуб, клен (твердая древесина), сосна и красное дерево (мягкая древесина) - широко используемые породы дерева. Древесину обычно делят на хвойные (хвойные) и лиственные (цветущие).

Долгое время и даже сегодня многие постройки, в основном дома, строились из дерева.Чтобы построить дом из дерева, пиломатериалы собирают в рамы, которые имеют форму каждой стены, пола и крыши дома. Затем каркасам придают форму домика. Затем рамы можно покрыть, чтобы получились сплошные стены. Иногда стены делают более деревянными.

Когда дом или здание покрыты деревом снаружи, деревянные части обычно плоские и сложены друг на друга. Эти кусочки называются битумной черепицей. Дерево также иногда используется в других частях дома, таких как двери и лестницы.Из дерева также делают заборы.

Плотники строят дома в основном из мягкой древесины, например, из сосны. Для изготовления многих видов мебели они используют более твердую древесину, такую ​​как клен или дуб. Когда кто-то строит что-то из дерева, они часто это красят. Краска защищает и украшает древесину. Некоторым людям нравится внешний вид дерева, поэтому они наносят на него прозрачную краску под названием лак . Это помогает защитить древесину и придает ей блеск.

Некоторые люди создают искусство из дерева. Иногда скульптуры строят из дерева: см. Гринлинг Гиббонс.

Обычные карандаши изготовлены из дерева. Внутри находится «свинец», который на самом деле не является свинцом. Глина или воск и графит образуют «грифель» в карандаше.

Древесина превращается в бумагу на крупных фабриках, называемых бумажными фабриками. Тепло, химикаты и машины отделяют волокна целлюлозы от других частей и вдавливают волокна в бумагу.

Викискладе есть медиафайлы по теме Wood .
.

химическая реакция | Определение, уравнения, примеры и типы

Химическая реакция , процесс, в котором одно или несколько веществ, реагентов, превращаются в одно или несколько различных веществ, продуктов. Вещества - это химические элементы или соединения. Химическая реакция перестраивает составляющие атомы реагентов с образованием различных веществ в виде продуктов.

горение

Полено горело в огне. Сжигание древесины является примером химической реакции, в которой древесина в присутствии тепла и кислорода превращается в двуокись углерода, водяной пар и золу.

© chrispecoraro / iStock.com

Популярные вопросы

Каковы основы химических реакций?

Что происходит с химическими связями, когда происходит химическая реакция?

Согласно современным представлениям о химических реакциях, связи между атомами в реагентах должны быть разорваны, а атомы или части молекул снова собираются в продукты, образуя новые связи.Энергия поглощается для разрыва связей, а энергия выделяется по мере образования связей. В некоторых реакциях энергия, необходимая для разрыва связей, больше, чем энергия, выделяемая при создании новых связей, и конечным результатом является поглощение энергии. Следовательно, в реакции могут образовываться разные типы связей. Кислотно-основная реакция Льюиса, например, включает образование ковалентной связи между основанием Льюиса, составляющей, которая поставляет электронную пару, и кислотой Льюиса, разновидностью, которая может принимать электронную пару.Аммиак - это пример базы Льюиса. Пара электронов, расположенных на атоме азота, может быть использована для образования химической связи с кислотой Льюиса.

Как классифицируются химические реакции?

Химики классифицируют химические реакции несколькими способами: по типу продукта, по типам реагентов, по исходу реакции и по механизму реакции. Часто данную реакцию можно разделить на две или даже три категории, включая реакции газообразования и осаждения. Многие реакции производят газ, такой как диоксид углерода, сероводород, аммиак или диоксид серы.Подъем теста для кексов вызван реакцией газообразования между кислотой и пищевой содой (гидрокарбонатом натрия). Классификация по типам реагентов включает кислотно-основные реакции и реакции окисления-восстановления, которые включают перенос одного или нескольких электронов от восстанавливающего агента к окислителю. Примеры классификации по результатам реакции включают реакции разложения, полимеризации, замещения, отщепления и присоединения. Цепные реакции и реакции фотолиза являются примерами классификации по механизму реакции, которая предоставляет подробные сведения о том, как атомы перемешиваются и собираются заново при образовании продуктов.

Химические реакции являются неотъемлемой частью технологии, культуры и, по сути, самой жизни. Сжигание топлива, плавка чугуна, изготовление стекла и глиняной посуды, пивоварение и изготовление вина и сыра - вот многие примеры деятельности, включающей химические реакции, которые были известны и использовались на протяжении тысяч лет. Химические реакции изобилуют геологией Земли, атмосферы и океанов, а также огромным количеством сложных процессов, происходящих во всех живых системах.

Следует отличать химические реакции от физических изменений.Физические изменения включают изменения состояния, такие как таяние льда в воду и испарение воды в пар. Если происходит физическое изменение, физические свойства вещества изменятся, но его химическая идентичность останется прежней. Вне зависимости от физического состояния вода (H 2 O) представляет собой одно и то же соединение, каждая молекула которого состоит из двух атомов водорода и одного атома кислорода. Однако если вода в виде льда, жидкости или пара встречает металлический натрий (Na), атомы будут перераспределены, давая новым веществам молекулярный водород (H 2 ) и гидроксид натрия (NaOH).Этим мы знаем, что произошло химическое изменение или реакция.

Тающий лед

Тающий лед, водопад Нижнее Чистилище, на притоке реки Соухеган между Мон Верноном и Линдборо, Нью-Гэмпшир. Таяние льда - это физическое изменение, а не химическая реакция.

Уэйн Дионн / © Отдел развития туризма и путешествий Нью-Гэмпшира

Исторический обзор

Концепция химической реакции возникла около 250 лет назад. Он возник в ранних экспериментах, в которых вещества классифицировались как элементы и соединения, а также в теориях, объясняющих эти процессы.Разработка концепции химической реакции сыграла первостепенную роль в определении современной химии.

Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской. Подпишитесь сегодня

Первые существенные исследования в этой области были посвящены газам. Особое значение имела идентификация кислорода в 18 веке шведским химиком Карлом Вильгельмом Шееле и английским священником Джозефом Пристли. Влияние французского химика Антуана-Лорана Лавуазье было особенно заметно, поскольку его идеи подтвердили важность количественных измерений химических процессов.В своей книге Traité élémentaire de chimie (1789; Элементарный трактат по химии ) Лавуазье выделил 33 «элемента» - вещества, не разбитые на более простые объекты. Среди своих многочисленных открытий Лавуазье точно измерил вес, набранный при окислении элементов, и приписал результат объединению элемента с кислородом. Концепция химических реакций, включающих комбинацию элементов, ясно появилась из его работ, и его подход побудил других исследовать экспериментальную химию как количественную науку.

Другим исторически значимым событием в области химических реакций было развитие теории атома. В этом большая заслуга английского химика Джона Далтона, который сформулировал свою атомную теорию в начале XIX века. Дальтон утверждал, что материя состоит из маленьких неделимых частиц, что частицы или атомы каждого элемента уникальны и что химические реакции участвуют в перегруппировке атомов с образованием новых веществ. Такой взгляд на химические реакции точно определяет текущую тему.Теория Дальтона послужила основой для понимания результатов ранних экспериментаторов, включая закон сохранения материи (материя не создается и не разрушается) и закон постоянного состава (все образцы вещества имеют одинаковый элементный состав).

Таким образом, эксперимент и теория, два краеугольных камня химической науки в современном мире, вместе определили концепцию химических реакций. Сегодня экспериментальная химия предоставляет бесчисленное количество примеров, а теоретическая химия позволяет понять их значение.

Основные понятия химических реакций

Создавая новое вещество из других веществ, химики говорят, что либо они проводят синтез, либо синтезируют новый материал. Реагенты превращаются в продукты, и процесс символизируется химическим уравнением. Например, железо (Fe) и сера (S) объединяются с образованием сульфида железа (FeS). Fe (s) + S (s) → FeS (s) Знак плюс указывает, что железо реагирует с серой. Стрелка означает, что реакция «образует» или «дает» сульфид железа, продукт.Состояние вещества реагентов и продуктов обозначается символами (s) для твердых веществ, (l) для жидкостей и (g) для газов.

.

химия | Определение, темы и история

Химия , наука, изучающая свойства, состав и структуру веществ (определяемых как элементы и соединения), превращения, которым они подвергаются, и энергию, которая выделяется или поглощается во время этих процессов. Каждое вещество, будь то естественное или искусственно созданное, состоит из одного или нескольких из ста с лишним видов атомов, которые были идентифицированы как элементы. Хотя эти атомы, в свою очередь, состоят из более элементарных частиц, они являются основными строительными блоками химических веществ; нет кислорода, ртути или золота, например, меньше, чем атом этого вещества.Поэтому химия занимается не субатомной областью, а свойствами атомов и законами, управляющими их комбинациями, и тем, как знание этих свойств может быть использовано для достижения определенных целей.

Популярные вопросы

Что такое химия?

Химия - это отрасль науки, изучающая свойства, состав и структуру элементов и соединений, то, как они могут изменяться, а также энергию, которая выделяется или поглощается при их изменении.

Как связаны химия и биология?

Химия изучает вещества, то есть элементы и соединения, а биология изучает живые существа.Однако эти две области науки встречаются в дисциплине биохимии, которая изучает вещества в живых существах и то, как они изменяются в организме.

Большой проблемой в химии является разработка последовательного объяснения сложного поведения материалов, почему они выглядят такими, как они есть, что придает им долговечные свойства и как взаимодействия между различными веществами могут приводить к образованию новых веществ и разрушение старых. С самых первых попыток понять материальный мир в рациональных терминах химики изо всех сил пытались разработать теории материи, которые удовлетворительно объясняли бы как постоянство, так и изменение.Упорядоченная сборка неразрушимых атомов в маленькие и большие молекулы или расширенные сети перемешанных атомов обычно считается основой постоянства, в то время как реорганизация атомов или молекул в различные структуры лежит в основе теорий изменений. Таким образом, химия включает изучение атомного состава и структурной архитектуры веществ, а также различных взаимодействий между веществами, которые могут привести к внезапным, часто бурным реакциям.

Химия также занимается использованием природных веществ и созданием искусственных.Кулинария, ферментация, производство стекла и металлургия - все это химические процессы, восходящие к истокам цивилизации. Сегодня винил, тефлон, жидкие кристаллы, полупроводники и сверхпроводники представляют собой плоды химической технологии. В 20-м веке произошел значительный прогресс в понимании удивительной и сложной химии живых организмов, и молекулярная интерпретация здоровья и болезней открывает большие перспективы. Современная химия, опираясь на все более совершенные инструменты, изучает материалы размером с отдельные атомы и такие большие и сложные, как ДНК (дезоксирибонуклеиновая кислота), которая содержит миллионы атомов.Можно даже разработать новые вещества, которые обладают желаемыми характеристиками, а затем синтезировать. Скорость, с которой продолжают накапливаться химические знания, впечатляет. С течением времени было охарактеризовано и произведено более 8 000 000 различных химических веществ, как природных, так и искусственных. В 1965 году их было меньше 500 000.

С интеллектуальными проблемами химии тесно связаны проблемы, связанные с промышленностью. В середине XIX века немецкий химик Юстус фон Либих заметил, что богатство нации можно измерить по количеству производимой серной кислоты.Эта кислота, необходимая для многих производственных процессов, остается сегодня ведущим химическим продуктом промышленно развитых стран. Как признал Либих, страна, производящая большое количество серной кислоты, - это страна с сильной химической промышленностью и сильной экономикой в ​​целом. Производство, распространение и использование широкого спектра химических продуктов характерно для всех высокоразвитых стран. Фактически, можно сказать, что «железный век» цивилизации сменяется «веком полимеров», поскольку в некоторых странах общий объем производимых полимеров превышает объем железа.

Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской. Подпишитесь сегодня

Область химии

Давно прошли те дни, когда один человек мог надеяться получить детальные знания во всех областях химии. Те, кто преследует свои интересы в определенных областях химии, общаются с другими, разделяющими те же интересы. Со временем группа химиков со специализированными исследовательскими интересами становится членами-основателями области специализации. Области специализации, возникшие в начале истории химии, такие как органическая, неорганическая, физическая, аналитическая и промышленная химия, а также биохимия, по-прежнему представляют наибольший общий интерес.Однако в XX веке произошел значительный рост в областях полимерной, экологической и медицинской химии. Более того, продолжают появляться новые специальности, например, пестициды, судебная медицина, компьютерная химия.

.

История химии | Известные химики

Во многом история цивилизации - это история химии - исследования материи и ее свойств. Люди всегда стремились идентифицировать, использовать и изменять материалы в окружающей среде. Ранние гончары находили красивую глазурь для украшения и сохранения своих изделий. Пастухи, пивовары и виноделы использовали методы ферментации для изготовления сыра, пива и вина. Хозяйки выщелачивали щелок из древесной золы, чтобы сделать мыло. Кузнецы научились соединять медь и олово для изготовления бронзы.Мастера научились делать стекло; кожевники дубили шкуры.

В восьмом веке нашей эры, Джабир ибн Хайян , мусульманский астроном, философ и ученый, стал одним из первых, кто использовал научные методы для изучения материалов. Также известный под латинским именем Гебер, он известен как «отец химии». Считается, что он является автором 22 свитков, описывающих методы дистилляции, кристаллизации, сублимации и испарения. Он изобрел перегонный куб - устройство, используемое для дистилляции и изучения кислот.Он также разработал раннюю систему химической классификации, используя свойства изучаемых материалов. Его категории были:

Сегодня мы можем назвать подобные материалы «летучими химическими веществами, металлами и неметаллами».

Классическая химия

В Европе изучение химии проводилось алхимиками с целью превращения обычных металлов в золото или серебро и изобретения химического эликсира, который продлил бы жизнь.Хотя эти цели так и не были достигнуты, в этой попытке было сделано несколько важных открытий.

Роберт Бойль (1627-1691) изучил поведение газов и обнаружил обратную зависимость между объемом и давлением газа. Он также заявил, что «всю реальность и все изменения можно описать в терминах элементарных частиц и их движения», что является ранним пониманием атомной теории. В 1661 году он написал первый учебник химии «Скептический цимист», который отвел изучение веществ от мистических ассоциаций с

.

химическое соединение | Определение, примеры и типы

Химическое соединение , любое вещество, состоящее из идентичных молекул, состоящих из атомов двух или более химических элементов.

молекула метана

Метан, в котором четыре атома водорода связаны с одним атомом углерода, является примером основного химического соединения. На структуру химических соединений влияют сложные факторы, такие как валентные углы и длина связи.

Encyclopædia Britannica, Inc.

Британская викторина

Подводки к химии

Возможно, вы знаете, что элементы составляют воздух, которым мы дышим, и воду, которую мы пьем, но знаете ли вы о них больше? Какой элемент почти такой же легкий, как водород? Что вы называете смесью двух химических элементов? Узнайте ответы в этой викторине.

Вся материя Вселенной состоит из атомов более чем 100 различных химических элементов, которые встречаются как в чистом виде, так и в сочетании в химических соединениях. Образец любого данного чистого элемента состоит только из атомов, характерных для этого элемента, и атомы каждого элемента уникальны. Например, атомы углерода отличаются от атомов железа, которые, в свою очередь, отличаются от атомов золота. Каждый элемент обозначается уникальным символом, состоящим из одной, двух или трех букв, возникающих либо из текущего имени элемента, либо из его исходного (часто латинского) имени.Например, символы углерода, водорода и кислорода - это просто C, H и O соответственно. Символ железа - Fe, от оригинального латинского названия ferrum . Фундаментальный принцип химической науки состоит в том, что атомы различных элементов могут объединяться друг с другом с образованием химических соединений. Известно, что, например, метан, который образован из элементов углерода и водорода в соотношении четыре атома водорода на каждый атом углерода, содержит отдельные молекулы CH 4 .Формула соединения - например, CH 4 - указывает типы присутствующих атомов, с нижними индексами, представляющими относительное количество атомов (хотя цифра 1 никогда не записывается).

молекула воды

Молекула воды состоит из двух атомов водорода и одного атома кислорода. Один атом кислорода содержит шесть электронов в своей внешней оболочке, которая может содержать в общей сложности восемь электронов. Когда два атома водорода связаны с атомом кислорода, внешняя электронная оболочка кислорода заполняется.

Encyclopædia Britannica, Inc.

Вода, которая представляет собой химическое соединение водорода и кислорода в соотношении два атома водорода на каждый атом кислорода, содержит молекулы H 2 O. Хлорид натрия - это химическое соединение, образованное из натрия (Na) и хлора (Cl) в соотношении 1: 1. Хотя формула хлорида натрия - NaCl, соединение не содержит реальных молекул NaCl. Скорее, он содержит равное количество ионов натрия с положительным зарядом (Na + ) и ионов хлора с отрицательным зарядом (Cl - ).( См. Ниже Тенденции в химических свойствах элементов, где обсуждается процесс превращения незаряженных атомов в ионы [т.е. частицы с положительным или отрицательным суммарным зарядом].) Вышеупомянутые вещества служат примером двух основных типов химических соединения: молекулярные (ковалентные) и ионные. Метан и вода состоят из молекул; то есть они являются молекулярными соединениями. С другой стороны, хлорид натрия содержит ионы; это ионное соединение.

Атомы различных химических элементов можно сравнить с буквами алфавита: так же, как буквы алфавита объединяются, образуя тысячи слов, атомы элементов могут объединяться различными способами, образуя бесчисленное множество соединений. .На самом деле известны миллионы химических соединений, и еще многие миллионы возможны, но еще не открыты и не синтезированы. Большинство веществ, встречающихся в природе, таких как древесина, почва и камни, представляют собой смеси химических соединений. Эти вещества могут быть разделены на составляющие их соединения физическими методами, которые не изменяют способ агрегирования атомов в соединениях. Соединения можно разделить на составные элементы путем химических изменений.Химическое изменение (то есть химическая реакция) - это изменение, при котором изменяется организация атомов. Пример химической реакции - горение метана в присутствии молекулярного кислорода (O 2 ) с образованием диоксида углерода (CO 2 ) и воды. CH 4 + 2O 2 → CO 2 + 2H 2 O В этой реакции, которая является примером реакции горения, происходят изменения в том, как атомы углерода, водорода и кислорода связаны друг с другом. в соединениях.

Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской. Подпишитесь сегодня

Химические соединения обладают поразительным набором характеристик. При обычных температурах и давлениях некоторые из них являются твердыми телами, некоторые - жидкостями, а некоторые - газами. Цвета различных составных частей совпадают с цветами радуги. Некоторые соединения очень токсичны для человека, тогда как другие необходимы для жизни. Замена только одного атома в соединении может быть причиной изменения цвета, запаха или токсичности вещества.Чтобы понять это огромное разнообразие, были разработаны системы классификации. В приведенном выше примере соединения классифицируются как молекулярные или ионные. Соединения также подразделяются на органические и неорганические. Органические соединения ( см. Ниже Органические соединения), названные так потому, что многие из них были первоначально изолированы от живых организмов, обычно содержат цепи или кольца из атомов углерода. Из-за огромного разнообразия способов связывания углерода и других элементов существует более девяти миллионов органических соединений.Соединения, которые не считаются органическими, называются неорганическими соединениями ( см. Ниже Неорганические соединения).

ртуть (Hg)

Ртуть (химический символ: Hg) - единственный металлический элемент, который является жидким при комнатной температуре.

© marcel / Fotolia

В рамках широкой классификации органических и неорганических веществ существует множество подклассов, в основном основанных на конкретных элементах или группах присутствующих элементов. Например, среди неорганических соединений оксиды содержат ионы O 2- или атомы кислорода, гидриды содержат ионы H - или атомы водорода, сульфиды содержат ионы S 2- и т. Д.Подклассы органических соединений включают спирты (содержащие группу OH), карбоновые кислоты (характеризующиеся группой COOH), амины (содержащие группу NH 2 ) и так далее.

Различные способности различных атомов объединяться с образованием соединений лучше всего можно понять с помощью периодической таблицы. Периодическая таблица Менделеева была первоначально построена для представления закономерностей, наблюдаемых в химических свойствах элементов ( см. химическая связь). Другими словами, по мере развития науки химии было замечено, что элементы можно сгруппировать в соответствии с их химической реакционной способностью.Элементы с подобными свойствами перечислены в вертикальных столбцах таблицы Менделеева и называются группами. По мере раскрытия деталей атомной структуры стало ясно, что положение элемента в периодической таблице коррелирует с расположением электронов, которыми обладают атомы этого элемента ( см. Атом ). В частности, было замечено, что электроны, определяющие химическое поведение атома, находятся в его внешней оболочке. Такие электроны называются валентными электронами.

таблица Менделеева

Периодическая таблица элементов.

Encyclopædia Britannica, Inc.

Например, атомы элементов в группе 1 периодической таблицы все имеют один валентный электрон, атомы элементов в группе 2 имеют два валентных электрона, и так далее, до группы 18 , элементы которого содержат восемь валентных электронов. Самое простое и самое важное правило для предсказания того, как атомы образуют соединения, состоит в том, что атомы имеют тенденцию объединяться таким образом, чтобы они могли либо опустошить свою валентную оболочку, либо завершить ее (т.е., заполните его), в большинстве случаев всего с восемью электронами. Элементы в левой части таблицы Менделеева имеют тенденцию терять свои валентные электроны в химических реакциях. Натрий (в Группе 1), например, имеет тенденцию терять свой одинокий валентный электрон с образованием иона с зарядом +1. Каждый атом натрия имеет 11 электронов ( e - ), каждый с зарядом -1, чтобы просто сбалансировать заряд +11 на его ядре. Потеря одного электрона оставляет его с 10 отрицательными зарядами и 11 положительными зарядами, что дает суммарный заряд +1: Na → Na + + e -.Калий, расположенный непосредственно под натрием в Группе 1, также образует в своих реакциях +1 ион (K + ), как и остальные члены Группы 1: рубидий (Rb), цезий (Cs) и франций (Fr). Атомы элементов в правом конце периодической таблицы имеют тенденцию вступать в реакции, так что они получают (или разделяют) достаточно электронов, чтобы заполнить свою валентную оболочку. Например, кислород в группе 16 имеет шесть валентных электронов и, следовательно, нуждается в двух дополнительных электронах для завершения своей внешней оболочки. Кислород достигает этой договоренности, реагируя с элементами, которые могут терять или делиться электронами.Атом кислорода, например, может реагировать с атомом магния (Mg) (в Группе 2), принимая два валентных электрона магния, образуя ионы Mg 2+ и O 2−. (Когда нейтральный атом магния теряет два электрона, он образует ион Mg 2+ , а когда нейтральный атом кислорода получает два электрона, он образует ион O 2-.) В результате образуется ион Mg 2+ и O 2- затем объединяют в соотношении 1: 1 с получением ионного соединения MgO (оксид магния). (Хотя составной оксид магния содержит заряженные частицы, у него нет чистого заряда, поскольку он содержит равное количество ионов Mg 2+ и O 2-.) Аналогичным образом кислород реагирует с кальцием (чуть ниже магния в группе 2) с образованием CaO (оксид кальция). Кислород аналогичным образом реагирует с бериллием (Be), стронцием (Sr), барием (Ba) и радием (Ra), остальными элементами группы 2. Ключевым моментом является то, что, поскольку все элементы в данной группе имеют одинаковое количество валентных электронов, они образуют аналогичные соединения.

Химические элементы можно классифицировать по-разному. Наиболее фундаментальное разделение элементов - на металлы, которые составляют большинство элементов, и неметаллы.Типичные физические свойства металлов - это блестящий внешний вид, пластичность (способность растираться в тонкий лист), пластичность (способность вытягиваться в проволоку), а также эффективная тепло- и электропроводность. Самым важным химическим свойством металлов является тенденция отдавать электроны с образованием положительных ионов. Например, медь (Cu) - типичный металл. Он блестящий, но легко тускнеет; это отличный проводник электричества и обычно используется для электрических проводов; и из него легко превращаться в изделия различной формы, такие как трубы для систем водоснабжения.Медь содержится во многих ионных соединениях в форме иона Cu + или Cu 2+ .

Металлические элементы находятся на левой стороне и в центре таблицы Менделеева. Металлы групп 1 и 2 называются типичными металлами; те, что находятся в центре периодической таблицы, называются переходными металлами. Лантаноиды и актиноиды, показанные под периодической таблицей, представляют собой особые классы переходных металлов.

металлических элементов в периодической таблице Менделеева

Металлы, неметаллы и металлоиды представлены в различных частях периодической таблицы Менделеева.

Encyclopædia Britannica, Inc.

Неметаллы, которых относительно мало, находятся в верхнем правом углу таблицы Менделеева, за исключением водорода, единственного неметаллического члена Группы 1. Физические свойства, характерные для металлы в неметаллах отсутствуют. В химических реакциях с металлами неметаллы приобретают электроны с образованием отрицательных ионов. Неметаллические элементы также реагируют с другими неметаллами, в этом случае образуя молекулярные соединения. Хлор - типичный неметалл.При обычных температурах элементарный хлор содержит молекулы Cl 2 и реагирует с другими неметаллами с образованием таких молекул, как HCl, CCl 4 и PCl 3 . Хлор реагирует с металлами с образованием ионных соединений, содержащих ионы Cl - .

Разделение элементов на металлы и неметаллы является приблизительным. Некоторые элементы вдоль разделительной линии проявляют как металлические, так и неметаллические свойства и называются металлоидами или полуметаллами.

.

Химия и ее отрасли ~ ChemistryGod

Что такое химия

Химия - это отрасль науки, которая занимается изучением материи, состоящей из атомов и молекул, их свойств, состава, структуры, поведения и взаимодействия между составляющими материи.

Химия - очень увлекательный предмет. Все мы окружены химией. Все вокруг нас состоит из атомов и молекул, включая само наше тело. Мы можем видеть химию в нашей повседневной деятельности; прямо от производства продуктов питания на фермах до их приготовления на кухне, от велосипеда до космической ракеты, от телефонов до компьютеров.Сталь, используемая в зданиях, полимеры, из которых делают полиэтиленовые пакеты, аккумуляторы для сотовых телефонов, фотосинтез, моющие средства, одежду, красители и краски, напитки и т. Д. - вот некоторые из примеров применения химии. Химия помогает нам понять мир, который мы видим и переживаем.

Отрасли химии

Сегодня химия стала очень разнообразным предметом с большим количеством отраслей. Современную химию можно разделить на пять основных разделов, которые обсуждаются ниже.

Основные отрасли химии

Пять основных областей химии - это физическая химия, аналитическая химия, неорганическая химия, органическая химия и биохимия.

Основные разделы химии
Физическая химия

Физическая химия, как следует из названия, представляет собой сочетание физики и химии. Физическая химия хорошо пересекается с некоторыми разделами физики. Это раздел науки, который занимается изучением макроскопических свойств, таких как давление, объем и т. Д .; атомные свойства, такие как энергия ионизации, электроотрицательность, валентность и т. д. Это также касается структуры вещества и энергии.

Некоторые из областей изучения физической химии упомянуты ниже:

  1. Химическая кинетика: это изучение скорости химической реакции.
  2. Термохимия: это область, относящаяся к термодинамике, которая имеет дело с теплом в химической системе и его отношением к работе.
  3. Химия поверхности: это область изучения химических процессов на поверхности материалов.
  4. Фотохимия: Изучение химических реакций, протекающих в присутствии света.
  5. Спектроскопия: касается электромагнитного излучения и того, как оно взаимодействует с атомами и молекулами.
  6. Статистическая механика: это статистическое исследование большого количества атомов и молекул.Статистическая механика - это один из предметов, в которых физика и химия пересекаются.
  7. Квантовая химия: это приложение квантовой механики к химической системе.
  8. Электрохимия: это раздел физической химии, который занимается химическими изменениями, связанными с движением электронов между электродами.
  9. Фемтохимия: это исследование химических реакций на фемтоуровне (10 −15 секунд). Это помогает нам понять каждое движение молекул.
Аналитическая химия

Это раздел химии, который специализируется на качественных и количественных методах анализа свойств материи. Короче говоря, это анализ химикатов. Он широко применяется в химической промышленности для поддержания качества конечного готового продукта. В реальной жизни этапы анализа - это разделение, идентификация и, наконец, количественная оценка. При разделении мы отделяем компоненты от смеси. После выделения желаемого образца мы определяем его составляющую с помощью качественного анализа.И, наконец, мы оцениваем концентрацию аналитов путем количественного анализа.

В аналитической химии используются два классических метода: качественный и количественный. Качественный метод включает определение химических составляющих (атомов, молекул, ионов и т. Д.) В веществах. В количественном методе определяется концентрация вещества в заданной пробе. С развитием науки и техники мы можем разрабатывать различные инструменты, которые могут обеспечить лучшую точность и точность.

Аналитическая химия - это не только анализ веществ, но и совершенствование существующих методов анализа и разработка новых.

Вот некоторые из распространенных методов анализа:

  1. Испытания на пламя: Испытание включает в себя воздействие пламени (восстанавливающего или окислительного) на образец с последующим наблюдением за цветом пламени. Цвет пламени дает нам представление о компонентах, присутствующих в образце. Этот тест практически не используется в промышленности или в профессиональном мире.
  2. Химические тесты: он используется для идентификации функциональных групп в данном образце путем проведения серии химических реакций на образце.
  3. Титрование (или волюметрический анализ): включает добавление известного титранта в раствор до достижения точки эквивалентности.
  4. Гравиметрия: это количественный метод, который используется для оценки количества присутствующего вещества на основе разницы масс после изменения.
  5. Хроматография: это метод разделения, который состоит из подвижной фазы (жидкости, несущей данный образец), которая течет по неподвижной фазе.На основании сродства ингредиентов подвижной фазы к стационарной фазе происходит удержание ингредиентов на стационарной фазе.
  6. Спектроскопия: это исследование того, как атомы и молекулы взаимодействуют с электромагнитным излучением.
  7. Электрохимический анализ: это метод анализа, при котором аналит исследуется путем пропускания электричества и измерения напряжения и тока с течением времени.
  8. Электрофорез: это метод разделения, при котором диспергированные частицы разделяются под действием электрического поля.
Неорганическая химия

Это раздел химии, который занимается изучением неорганических соединений. Неорганические соединения - это соединения, не содержащие углерод-водородной связи. Неорганические соединения в основном находятся под поверхностью земли: горные породы и минералы, а также другие вещества производятся в химической промышленности. Неорганические химические вещества находят применение в красках, пигментах, покрытиях, удобрениях, поверхностно-активных веществах, дезинфицирующих средствах и в солнечной энергетике. Крупнейшие производимые в мире неорганические химические вещества - это серная кислота, водород, азот, аммиак, хлор, пентаоксид фосфора, азотная кислота, соляная кислота, гидроксид натрия.

Некоторые из областей неорганической химии следующие:

  1. Координационная химия: она состоит из изучения координационных комплексов. Координационные комплексы состоят из центрального атома, обычно металла, окруженного лигандами или комплексообразующим агентом.
  2. Металлоорганическая химия: это исследование металлоорганических соединений, которые состоят из соединений, имеющих связь металл-углерод-водород (металлоорганическая связь). Эта область входит как в органическую, так и в неорганическую химию.
  3. Биоинорганическая химия: охватывает взаимодействие неорганических веществ, таких как металлы, в клетках и тканях.
  4. Химия твердого тела (или химия материалов): это исследование свойств, структуры твердой фазы. Это часть физики твердого тела.
Органическая химия

Это раздел химии, который занимается изучением органических соединений. органические соединения - это соединения, содержащие углерод-водородную связь. Углерод способен образовывать длинные цепи C-C (так называемая катенация).Именно из-за этого свойства углерода он образует огромное количество соединений. Это причина того, почему органические соединения превосходят неорганические соединения. Помимо углерода и водорода, элементами, широко присутствующими в органических соединениях, являются кислород, азот, сера, фосфор и галогены (фтор, хлор и йод). Органические соединения используются в сельском хозяйстве, пищевой промышленности, медицине, полимерах, текстиле, инсектицидах, фармацевтике, резине, топливе и производстве товаров народного потребления. Некоторые из важных промышленных органических химикатов: метан, этилен, пропилен, 1,2-дихлорэтилен, метанол, изопропиловый спирт, бутан, ацетилен, полистирол, глицерин, ацетон, уксусная кислота, уксусный ангидрид, мочевина, толуол, фенол, анилин.глюкоза, фруктоза, крахмал и т. д.

Важные области органической химии упомянуты ниже.

  1. Химия полимеров: изучает синтез и свойства полимеров.
  2. Металлоорганические химические соединения: это исследование металлоорганических соединений, которые состоят из соединений, имеющих связь металл-углерод-водород (металлоорганическая связь). Эта область входит как в органическую, так и в неорганическую химию.
  3. Физико-органическая химия: это исследование реакционной способности и структуры органических химикатов.
  4. Стереохимия: это химия, изучающая стереоизомеры. Он фокусируется на пространственном расположении атомов.
  5. Медицинская химия: включает применение химии в медицине и разработке лекарств.
  6. Биоорганическая химия: это сочетание органической и биохимии.
Биохимия

Биохимия - это область науки, в которой основное внимание уделяется изучению химических процессов внутри биологической системы. Биохимия - это новая область по сравнению с указанными выше разделами химии.Профессионалов в этой области химии называют биохимиками. Биохимия фокусируется на использовании химии для лучшего понимания биологических систем, таких как дыхание, пищеварение, клеточный метаболизм и т. Д. Биохимики работают над такими заболеваниями, как рак, чтобы разработать лучшее лечение; они также изучают молекулярную генетику, чтобы улучшить гены.

Важными областями исследований в биохимии являются следующие:

  1. Молекулярно-генетический: включает изучение генов. Это тесно связано с генной инженерией.
  2. Сельскохозяйственная биохимия: основное внимание уделяется применению биохимии для улучшения сельскохозяйственного производства.
  3. Молекулярная биохимия: занимается изучением макромолекул, таких как белки, мембраны, ферменты, нуклеиновые кислоты, аминокислоты, вирусы и т. Д.
  4. Клиническая биохимия: это все о болезнях и связанных с ними темах.
  5. Иммунохимия: это раздел биохимии, связанный с химической реакцией, связанной с иммунной системой.

Другие дисциплины химии

Химия не ограничивается указанными выше пятью отраслями, но есть много других специализированных областей химии, разработанных за определенный период времени.

Астрохимия

Это исследование химических реакций в космическом пространстве. Астрохимия тесно связана с астрономией.

Геохимия

Это исследование химических систем в геологической среде. Геохимики изучают такие виды деятельности, как горное дело, добыча нефти, образование горных пород, образование нефти.

Химия пищевых продуктов

Химики-пищевые химики изучают различные биологические составляющие пищи. Основными составляющими любой биологической системы являются углеводы, жиры и белки.Химики-пищевые химики улучшают качество еды. Качество пищи может быть улучшено за счет увеличения продолжительности жизни пищи, правильного хранения и сохранения таких сенсорных аспектов, как запах, цвет и вкус пищи.

Химическая инженерия

Работу инженеров-химиков можно разделить на две основные категории: создание инновационных продуктов и промышленное применение. В промышленности они работают над обработкой химикатов, устранением неисправностей, поддержанием ежедневного объема производства. Это в основном полевые работы.Они также работают над разработкой и улучшением новых методов для лучшего производства химикатов. Находясь в лаборатории, они в основном тратят время на разработку новых материалов.

Судебная химия

Судебная химия - это приложение аналитической химии. Он предполагает анализ различных образцов аналитическими методами с целью выявления преступников. Судебные химики работают в лабораториях и в основном работают в государственных учреждениях.

Ядерная химия

Этот раздел химии занимается изучением реакций на атомном уровне, таких как деление, синтез.Ученые-ядерщики работают над созданием ядерных бомб, ядерной энергетики. Преобразование ядерной энергии в электричество - одно из главных достижений ученых-ядерщиков.

Нейрохимия

Это исследование химических веществ, связанных с нервной системой (также называемых нейрохимическими веществами). Нейрохимические вещества включают глутамат, глицин, дофамин, норэпинефрин, аденозин, гистамин и т. Д.

Космохимия

Это исследование химических компонентов материи во Вселенной.

Химия атмосферы

Основное внимание уделяется пониманию сложных химических процессов в атмосфере планеты. Это очень важная область для понимания изменения климата.

Фитохимия

Он тесно связан с ботаникой. Это изучение фитохимических веществ, полученных из растений.

Ocean Chemistry

Также называется «Морская химия», которая занимается изучением химических процессов в океанах.

Нефтехимия

Отрасль химии, связанная с сырой нефтью, нефтью, природным газом, его переработкой и переработкой.Нефтехимия - очень важный сегмент, поскольку большая часть наших потребностей в энергии удовлетворяется за счет конечных нефтепродуктов, таких как бензин, дизельное топливо, сжиженный газ и т. Д.

Математическая химия

Это реализация математики для моделирования различных химических процессов. Это сочетание математики и химии.

Механохимия

В механохимии химические реакции происходят путем приложения механической энергии к молекулам. Это новая область. Это сочетание химии и машиностроения.

Радиохимия

Он занимается использованием радиоактивных веществ для изучения обычных химических реакций.

Сонохимия

Это отрасль науки, изучающая влияние ультразвуковых волн (высокочастотного звука) на химические системы.

Супрамолекулярная химия

Эта ветвь включает изучение межмолекулярных сил, образованных нековалентными связями, таких как силы Ван-дер-Вааль, водородные связи, координация металлов и т. Д.

Промышленная химия

Это исследование промышленных процессов преобразования сырья в продукты.Это происходит между лабораторными исследованиями и производством в промышленных масштабах. Химик-промышленник и инженер-химик тесно связаны. промышленный химик больше сосредоточен на химическом аспекте процесса. В то время как инженер-химик больше озабочен масштабированием процесса экономичным способом.

Химия окружающей среды

Химия окружающей среды занимается изучением химических взаимодействий в воздухе, почве и водной среде. Химики-экологи применяют знания химии, чтобы понять окружающую среду.

Зеленая химия

Зеленая химия направлена ​​на сокращение вредных веществ в окружающей среде за счет улучшения химических процессов и разработки альтернативных способов. Это также называется устойчивой химией; Не следует путать с химией окружающей среды.

Многие отрасли химии пересекаются друг с другом.

Связанные статьи

.

Смотрите также

Сайт о Бане - проект, посвященный строительству, эксплуатации и уходу за русской баней. Большой сборник статей, который может быть полезен любому любителю бани

Содержание, карта сайта.