Производство из дерева спирта


ПРОИЗВОДСТВО ЭТИЛОВОГО СПИРТА ИЗ ДРЕВЕСИНЫ

Гидролиз полисахаридов растительной ткани в холодной воде практически не наблюдается. При повышении температуры воды выше 100° гидролиз полисахаридов протекает, но настолько мед­ленно, что практического значения такой процесс не имеет. Удо­влетворительные результаты получаются только при при­менении катализаторов, из которых производственное значение имеют лишь сильные минеральные кислоты: серная и реже со­ляная. Чем выше концентрация сильной кислоты в растворе и температура реакции, тем быстрее протекает гидролиз поли­сахаридов до моносахаридов. Однако присутствие таких ката­лизаторов имеет и отрицательную сторону, так как они одно­временно с реакцией гидролиза полисахаридов ускоряют и реак­ции распада моносахаридов, соответственно снижая этим их выход.

При распаде гексоз в этих условиях вначале образуется окси — метилфурфурол, который быстро разлагается далее с образова­нием конечных продуктов: левулиновой и муравьиной кислот. Пентозы в этих условиях превращаются в фурфурол.

В связи с этим, чтобы получить из полисахаридов расти­тельной ткани моносахариды, необходимо обеспечить наиболее благоприятные условия для реакции гидролиза и максимально сократить возможности дальнейшего распада образующихся моносахаридов.

В этом заключается задача, которую решают исследователи и производственники при выборе оптимальных режимов гид­ролиза.

Из большого числа возможных вариантов концентрации кис­лоты и температуры реакции в настоящее время практически применяются только два: гидролиз разбавленными кислотами и гидролиз концентрированными кислотами. При гидролизе раз­бавленными кислотами температура реакции обычно составляет 160—190° и концентрация катализатора в водном растворе ко­леблется от 0,3 до 0,7% (h3S04, НС1).

Реакцию проводят в автоклавах под давлением 10—15 атм. При гидролизе концентрированными кислотами концентрация серной кислоты обычно составляет 70—80%, а соляной 37—42%. Температура реакции в этих условиях 15—40°.

Снизить потери моносахаридов легче при гидролизе концен­трированными кислотами, вследствие чего выход сахара при этом методе может достигать почти теоретически возможного, т, е. 650—750 кг из 1 т абсолютно сухого растительного сырья.

При гидролизе разбавленными кислотами снизить потери моносахаридов вследствие их разложения значительно труднее и поэтому практически выход моносахаридов в этом случае обычно не превышает 450—500 кг из 1 г сухого сырья.

Ввиду малых потерь сахара при гидролизе концентрирован­ными кислотами получающиеся водные растворы моносахари­дов — гидролизаты отличаются повышенной чистотой, что имеет большое значение при их последующей переработке.

Серьезным недостатком методов гидролиза концентрирован­ными кислотами до последнего времени был большой расход минеральной кислоты на тонну получаемого сахара, что приво дило к необходимости регенерации части кислоты или использо­вания ее в других производствах; это осложняло и удорожало строительство и эксплуатацию таких заводов.

Большие трудности возникали также при подборе для аппа­ратуры материалов, стойких в агрессивных средах. По этой при­чине основная масса действующих в настоящее время гидролиз­ных заводов была построена по методу гидролиза разбавленной серной кислотой.

Первый опытный гидролизно-спиртовый завод в СССР был пущен в январе 1934 г. в г. Череповце. Исходные показатели и технический проект этого завода были разработаны кафедрой гидролизных производств Ленинградской лесотехнической ака­демии в 1931 —1933 гг. На основе данных эксплуатации опытного завода было начато строительство в СССР промышленных гид — ролизно-спиртовых заводов. Первый промышленный гидролизно — спиртовый завод был пущен в Ленинграде в декабре 1935 г. Вслед за этим заводом в период 1936—1938 гг. вошли в строй Бобруйский, Хорский и Архангельский гидролизно-спиртовые заводы. Во время второй мировой войны и после нее было по­строено много больших заводов в Сибири и на Урале. В настоя­щее время проектная мощность этих заводов в результате со­вершенствования технологии перекрыта в 1,5—2 раза.

Основным сырьем для этих заводов является хвойная дре­весина в виде опилок и щепы, поступающая с соседних лесопиль­ных заводов, где ее получают путем измельчения в рубительных машинах отходов лесопиления — горбыля и рейки. В отдельных случаях измельчают и хвойные дрова.

Схема получения моносахаридов на таких заводах представ­лена на рис. 76.

Измельченная хвойная древесина со склада сырья по транс­портеру 1 поступает в направляющую воронку 2 и далее в горло-

Вину гидролизаппарата 3. Это вертикальный стальной цилиндр с верхним и нижним конусами и горловинами. Внутреннюю по­верхность такого гидролизаппарата покрывают кислотоупорны­ми керамическими или графитовыми плитками или кирпичом, укрепленным на слое бетона толщиной 80—100 мм. Швы между плитками заполняются кислотоупорной замазкой. Верхняя и ниж­няя горловины гидролизаппарата с внутренней стороны защи­щены от действия горячей разбавленной серной кислоты слоем кислотоупорной бронзы. Полезный объем таких гидролизаппа — ратов обычно составляет 30—37 At3, но иногда применяются так­же гидролизаппараты объемом 18, 50 и 70 м3. Внутренний диа­метр таких гидролизаппаратов составляет около 1,5, а высота 7—13 м. В верхний конус гидролизаппарата во время гидролиза по трубе 5 подается нагретая до 160—200° разбавленная серная кислота.

В нижнем конусе установлен фильтр 4 для отбора получен­ного гидролизата. Гидролиз в таких аппаратах производится пе­риодически.

Как уже указывалось выше, гидролизаппарат загружают измельченным сырьем через направляющую воронку. При за­грузке сырья через трубу 5 поступает нагретая до 70—90° раз­бавленная серная кислота, которая смачивает сырье, способ­ствуя его уплотнению. При таком методе загрузки в 1 м3 гид­ролизаппарата помещается около 135 кг опилок или 145—155 кг Щепы, в пересчете на абсолютно сухую древесину. По окончании загрузки содержимое гидролизаппарата подогревается острым паром, поступающим в нижний конус его. Как только будет достигнута температура 150—170°, в гидролизаппарат по тру­бе 5 начинает поступать 0,5—0,7’%-пая серная кислота, нагретая до 170—200°. Одновременно образующийся гидролизат через фильтр 4 начинает выводиться в испаритель б. Реакция гидро­лиза в гидролизаппарате продолжается от 1 до 3 часов. Чем короче время гидролиза, тем выше температура и давление в гидролизаппарате.

В процессе гидролиза полисахариды древесины переходят в соответствующие моносахариды, растворяющиеся в горячей разбавленной кислоте. Для предохранения этих моносахаридов от разложения при высокой температуре содержащий их гидро­лизат непрерывно в течение всей варки выводят через фильтр 4 И быстро охлаждают в испарителе 6. Так как по условиям про­цесса гидролизуемое растительное сырье. в гидролизаппарат" все время должно быть залито жидкостью, заданный уровень е поддерживается горячей кислотой, поступающей по трубе 5,

Такой метод работы носит название перколяция. Чем быст рее идет перколяция, т. е. чем быстрее через гидролизаппарат протекает горячая кислота, тем быстрее образующийся сахар выводится из реакционного пространства и тем меньше он раз­лагается. С другой стороны, чем быстрее идет перколяция, тем больше расходуется на варку горячей кислоты и тем меньше получается концентрация сахара в гидролизате и соответственно больше расход пара и кислоты на варку.

Практически для получения достаточно высоких выходов сахара (при экономически приемлемой концентрации его в гид­ролизате) приходится выбирать некоторые средние условия пер — коляции. Обычно останавливаются на выходе сахара в 45—50% от веса абсолютно сухой древесины при концентрации сахара в гидролизате 3,5—3,7 % — Эти оптимальные условия реакции соответствуют отбору через нижний фильтр из гидролизаппара — та 12—15 м3 гидролизата на 1 т абсолютно сухой древесины, загруженной в гидролизаппарат. Количество гидролизата, отби­раемого за варку на каждую тонну гидролизуемого сырья, назы­вают гидромодулем вытекания, и он является одним из основных показателей примененного на заводе режима гидролиза.

В процессе перколяции между верхней и нижней горловина­ми гидролизаппарата возникает некоторая разность давлений, способствующая сжатию сырья по мере растворения содержа­щихся в нем полисахаридов.

Сжатие сырья приводит к тому, что в конце варки остающий­ся нерастворенным лигнин занимает объем около 25% началь­ного объема сырья. Поскольку по условиям реакции жидкость должна покрывать сырье, уровень ее в процессе варки соответ­ственно снижается. Контроль за уровнем жидкости в процессе варки осуществляется при помощи весомера 30, показываю­щего изменение суммарного веса сырья и жидкости в гидролиз — аппарате.

По окончании варки в аппарате остается лигнин, содержащий на 1 кг сухого вещества 3 кг разбавленной серной кислоты, на-^ гретой до 180—190°.

Из гидролизаппарата лигнин выгружают в циклон 22 по тру^ бе 21. Для этой цели быстро открывают клапан 20, соединяю­щий внутреннее пространство гидролизаппарата с циклоном 22. Благодаря быстрому снижению давления между кусочками лиг­нина содержащаяся в нем перегретая вода мгновенно вскипает, образуя большие объемы пара. Последний рвет лигнин и увле­кает его в виде взвеси по трубе 21 в циклон 22. Труба 21 подхо­дит к циклону по касательной, благодаря чему струя пара с лигнином, врываясь в циклон, движется вдоль стенок, совер — шая вращательное движение. Лигнин центробежной силой от­брасывается к боковым стенкам и, теряя скорость, падает на дно циклона. Освобожденный от лигнина пар через центральную трубу 23 выбрасывается в атмосферу.

Циклон 22 обычно представляет собой вертикальный сталь-‘ ной цилиндр объемом около 100 м3, снабженный боковой двер­цей 31 и вращающейся мешалкой 25, которая помогает при вы­грузке лигнина со дна циклона на ленточный или скребковый транспортер 24.

Для предохранения от коррозии внутренняя поверхность циклонов иногда защищается слоем кислотоупорного бетона Как уже указывалось выше, в процессе перколяции в верхний конус гидролизаппарата подается нагретая разбавленная серная кислота. Ее приготовляют путем смешивания в кислотоупорном смесителе 17 перегретой воды, подаваемой по трубе 28, с холод­ной концентрированной серной кислотой, поступающей из мер­ного бачка 19 через поршневой кислотный насос 18.

Поскольку холодная концентрированная серная кислота слабо корродирует железо и чугун, эти металлы широко исполь­зуют для изготовления баков, насосов и трубопроводов, предна­значенных для ее хранения и транспортировки к смесителю. Ана­логичные материалы применяются и для подвода перегретой йоды к смесителю. Для защиты стенок смесителя от коррозии Применяют фосфористую бронзу, графит или пластическую мас­су — фторопласт 4. Последние два используются для внутренней футеровки смесителей и дают наилучшие результаты.

Готовый гндролизат из гидролизаппарата поступает в испа­ритель 6 высокого давления. Это — стальной сосуд, работающий под давлением и футерованный внутри керамическими плитка­ми, как и гидролизаппарат. В верхней части испарителя ем­костью 6—8 ж3 имеется крышка. В испарителе поддерживается давление на 4—5 атм ниже, чем в гидролизаппарате. Благодаря этому попадающий в него гидролизат мгновенно вскипает, час­тично испаряясь, и охлаждается до 130—140°. Образующийся пар отделяется от капель гидролизата и по трубе 10 поступает в решофер (теплообменник) 11, где конденсируется. Частично охлажденный гидролизат из испарителя 6 по трубе 7 поступает в испаритель 8 низкого давления, где охлаждается до 105—110° в результате вскипания при более низком давлении, обычно не превышающем одной атмосферы. Образующийся в этом испари­теле пар по трубе 14 подается во второй решофер 13, где также конденсируется. Конденсаты из решоферов 11 и 13 содержат 0,2—0,3% фурфурола и используются для его выделения на спе­циальных установках, которые будут рассмотрены ниже.

Тепло, содержащееся в паре, который выходит из испарите­лей 6 и 8, используется для нагрева воды, поступающей в сме­ситель 17. Для этой цели из бака 16 оборотной воды насосомТеплую воду, полученную из ректификационного отделения гид­ролизного завода, подают в решофер низкого давления 13, где она нагревается с 60—80° до 100—110°. Затем по трубе 12 подо­гретая вода проходит решофер высокого давления 11, где паром при температуре 130—140° подогревается до 120—130°. Дальше температуру воды повышают до 180—200° в водогрейной колон­не 27. Последняя представляет собой вертикальный стальной ци­линдр с дном и верхней крышкой, рассчитанными на рабочее давление 13—15 атм.

Пар в водогрейную колонку подают по вертикальной тру­бе 26, на конце которой укреплены 30 горизонтальных дисков 2Ь. Пар из трубы 26 проходит через щели между отдельными диска­ми в колонну, заполненную водой. Последняя непрерывно по­дается в колонну через нижний штуцер, смешивается с паром, нагревается до заданной температуры и по трубе 28 поступает в смеситель 17.

Гидролизаппараты устанавливают на специальном фундамен­те в ряд по 5—8 шт. На больших заводах число их удваивают и устанавливают их в два ряда. Трубопроводы для гидролизата изготовляют из красной меди или латуни. Арматура, состоящая из вентилей и клапанов, изготовляется из фосфористой или паспортной бронзы.

Описанный выше способ гидролиза является периодическим. В настоящее время испытываются новые конструкции гидролпз — аппаратов непрерывного действия, в которые при помощи спе­циальных питателей непрерывно подается измельченная древе­сина, непрерывно удаляется лигнин и гидролизат.

Ведутся также работы по автоматизации гидролизаппаратов периодического действия. Это мероприятие позволяет более точ­но соблюдать заданный режим варки и одновременно облегчает труд варщиков.

Кислый гидролизат из испарителя низкого давления 8 (рис. 76) по трубе 9 подают в аппаратуру для его последующей пере­работки. Температура такого гидролизата 95—98°. В нем содержится (в %):

Серной кислоты. . . ……………………………………………………………………………………………….. 0,5 —0,7:

Гексоз (глюкоза, манноза, галактоза)………………………………………………………….. 2,5 —2,8;

Пентоз (ксилоза, арабиноза)…………………………………………………………………………. 0,8 —1,0;

Летучих органических кислот (муравьиная, уксус­ная) …………………………….. 0,24-0,30;

Нелетучих органических кислот (левулиновая) . . 0,2 —0,3;

Фурфурола………………………………………………………………………………………………………. 0,03—0,05;

Оксиметилфурфурола……………………………………………………………………………………. 0,13—0,16;

Метанола. ……………………………………………………………………………………………………….. 0,02-0,03

В гидролизатах присутствуют также коллоидные вещества (лигнин, декстрины), зольные вещества, терпены, смолы и т. д. Содержание моносахаридов в растительных гидролизатах при точных химических исследованиях устанавливают путем коли­чественной бумажной хроматографии.

В заводских лабораториях при массовых экспрессных опре­делениях Сахаров используется способность их в щелочной среде восстанавливать комплексные соединения окиси меди с образо­ванием закиси меди:

2 Си (ОН)2 Си5 О + 2 Н2 О + 02.

По количеству образующейся закиси меди вычисляется со — i-фжание моносахаридов в растворе.

Такой метод определения Сахаров является условным, так Как одновременно с моносахаридами окись меди восстанавли­вают в закись также фурфурол, оксиметилфурфурол, декстрины, коллоидный лигнин. Эти примеси мешают определению истинно­го содержания сахара в гидролизатах. Общая ошибка здесь до­стигает 5—8%. Поскольку поправка на эти примеси требует большой затраты труда, ее обычно не делают, а полученные сахара в отличие от моносахаридов называют редуцирующими веществами или сокращено РВ. В заводских условиях учет ко­личества вырабатываемого сахара в гидролизате учитывают в тоннах РВ.

Для получения этилового спирта гексозы (глюкоза, манноза и галактоза) сбраживают спиртообразующими дрожжами — са­харомицетами или шизосахаромицетами.

Суммарное уравнение спиртового брожения гексоз

C(i Hf, 06 — 2 С2 НГ) ОН + 2 С02 Гексоза этиловый спирт

Показывает, что при этом процессе теоретически на каждые 100 кг сахара должно получаться 51,14 кг, или около 64 л 100%-ного этилового спирта и около 49 кг углекислоты.

Таким образом, при спиртовом брожении гексоз получается почти в равных количествах два основных продукта: этанол и углекислота. Для осуществления этого процесса горячий кис­лый гидролизат должен быть подвергнут следующей обработке.:

1) нейтрализации; 2) освобождению от взвешенных твердых частиц; 3) охлаждению до 30°; 4) обогащению гидролизата не­обходимыми для жизнедеятельности дрожжей питательными веществами.

Кислый гидролизат имеет рН=1 —1,2. Среда, пригодная для брожения, должна иметь рН = 4,6—5,2. Чтобы придать гидро — лизату необходимую кислотность, содержащиеся в нем свобод­ную серную и значительную часть органических кислот необ­ходимо нейтрализовать. Если все кислоты, содержащиеся в гидролизате, условно выразить в серной кислоте, то ее концен­трация составит около 1%. Остаточная кислотность гидролизата при рН = 4,6—5,2 составляет около 0,15%.

Поэтому для получения в гидролизате необходимой концен­трации ионов водорода, в нем должно быть нейтрализовано 0,85% кислот. При этом полностью нейтрализуется свободная серная, муравьиная и часть уксусной. Остаются свободными левулиновая кислота и небольшая часть уксусной.

Нейтрализуют гидролизат известковым молоком, т. е. суспен­зией гидрата окиси кальция в воде с концентрацией 150—200 г СаО в литре.

Схема приготовления известкового молока представлена нм рис. 77.

Негашеную известь СаО непрерывно подают в загрузочную воронку вращающегося известегасительного барабана 34. Одно­временно в барабан подают необходимое количество воды. При вращении барабана негашеная известь, связывая воду, перехо­дит в гидрат окиси кальция. Последний диспергируется в воде, образуя суспензию. Не прореагировавшие куски извести отде­ляются в конце барабана от известкового молока и сбрасыва­ются в вагонетку. Известковое молоко вместе с песком протекает по трубе в отделитель песка 35. Последний представляет собой горизонтально расположенное железное корыто с поперечными перегородками и продольным валом с лопастями.

Известковое молоко в этом аппарате медленно течет справа налево и далее по трубе 36 сливается в сборник 2.

Песок медленно оседает между перегородками отделителя песка и при помощи медленно вращающихся лопаток удаляется из аппарата. Перед поступлением известкового молока в нейтра­лизатор его смешивают с заданным количеством сернокислого аммония, раствор которого поступает из бачка 37. При смеше­нии известкового молока с сернокислым аммонием протекает реакция

Са (ОН)3 + (Nh5)2 S04-> CaS04 + 2 NH, ОН, в результате которой часть извести связывается серной кислотой сернокислого аммония и образуются кристаллы плохо раствори­мого двухводного сернокислого кальция CaS04-2h30. Одновре­менно образуется аммиак, остающийся в известковом молоке в растворенном состоянии.

Присутствующие в известковом молоке мелкие кристаллы гипса при последующей нейтрализации являются центрами кристаллизации образующегося гипса и предохраняют от обра­зования пересыщенных растворов его в нейтрализованном гидро­лизате. Это мероприятие имеет важное значение при последую­щей отгонке спирта из бражки, так как пересыщенные растворы гипса в бражке вызывают гипсацию бражных колонн и быстро выводят их из строя. Такой метод работы получил название ней­трализации с направленной кристаллизацией гипса.

Одновременно с известковым молоком в нейтрализатор 5 Подаются слабокислый водный экстракт суперфосфата из мер­ника-бачка 38.

Соли даются в нейтрализатор из расчета 0,3 кг сернокислого аммония и 0,3 кг суперфосфата на 1 м3 гидролизата.

Нейтрализатор 5 (емкостью 35—40 м3) представляет собой стальной бак, футерованный кислотоупорными керамическими плитками и снабженный вертикальными мешалками и тормозны­ми лопатками, укрепленными неподвижно на стенках бака. Ней­трализация на гидролизных заводах ранее производилась пе­риодически. В настоящее время она вытесняется более совершен­ной непрерывной нейтрализацией. На рис. 77 приведена послед­няя схема. Процесс осуществляется в двух последовательно со­единенных нейтрализаторах 5 и 6, имеющих одинаковое устрой­ство. Кислый гидролизат по трубе 1 непрерывно подается в пер­вый нейтрализатор, куда одновременно поступают известковое молоко и питательные соли. Контроль за полнотой нейтрализа­ции производят путем измерения концентрации ионов водорода при помощи потенциометра 3 с сурьмяным или стеклянным электродом 4. Потенциометр непрерывно записывает рН гидро­лизата и автоматически регулирует его в заданных пределах, посылая электрические импульсы реверсивному мотору, соеди­ненному с запорной арматурой на трубе, подающей известковое молоко в первый нейтрализатор. В нейтрализаторах сравнитель­но быстро протекает реакция нейтрализации и относительно медленно — процесс кристаллизации гипса из пересыщенного раствора.

Поэтому скорость протекания жидкости через нейтрализа — ционную установку обусловлена вторым процессом, требующим для своего окончания 30—40 мин.

По истечении этого времени нейтрализованный гидролизат, называемый «нейтрализатом», поступает в отстойник 7 полу­непрерывного или непрерывного действия.

Полунепрерывный процесс состоит в том, что нейтрализат протекает через отстойник непрерывно, а оседающий на дно его гипс удаляется периодически, по мере накопления.

При непрерывной работе отстойника все операции произво­дятся непрерывно. Перед спуском в канализацию шлам 8 в при­емнике дополнительно промывается водой. Последний способ из-за некоторых производственных трудностей еще не получил широкого распространения.

Гипсовый шлам из отстойника обычно состоит наполовину из двухводного сернокислого кальция и наполовину из лигнина и гуминовых веществ, осевших из гидролизата. На некоторых гидролизных заводах гипсовый шлам обезвоживают, высушива­ют и обжигают, превращая в строительный алебастр. Обезвожи­вают на барабанных вакуум-фильтрах, а высушивают и обжи­гают во вращающихся барабанных печах, обогреваемых топоч­ными газами.

Нейтрализат, освобожденный от взвешенных частиц, перед брожением охлаждается в холодильнике 10 (рис. 77) с 85 до 30°. Для этой цели обычно применяются спиральные или пла­стинчатые теплообменники, отличающиеся высоким коэффици­ентом теплопередачи и небольшими габаритами. При охлажде­нии из нейтрализата выделяются смолообразные вещества, кото­рые оседают на стенках теплообменников и постепенно загряз­няют их. Для чистки теплообменники периодически отключают и промывают 2—4%-ным горячим водным раствором едкого на­тра, который растворяет смолообразные и гуминовые вещества.

Нейтрализованный, очищенный и охлажденный гидролизат.

Содержащий необходимые питательные соли, носит название древесного сусла.

Сбраживают древесное сусло специальными акклиматизиро­ванными в этой среде спнртообразующими дрожжами. Брожение идет по непрерывному методу в батарее последовательно соеди­ненных бродильных чанов 11 и 12.

Дрожжевая суспензия, содержащая около 80—100 г прессо­ванных[1] дрожжей в литре, подается непрерывным потоком по трубе 15 в дрожжанку 44 и затем в верхнюю часть первого, или головного, бродильного чана 11. В дрожжанку одновременно’ с дрожжевой суспензией подается охлажденное древесное сусло. На каждый кубометр дрожжевой суспензии в бродильный чан поступает 8—10 м3 сусла.

Дрожжинки, содержащиеся в среде гексозных Сахаров, при помощи системы ферментов расщепляют сахара, образуя этило­вый спирт и углекислоту. Этиловый спирт переходит в окружаю­щую жидкость, а углекислый газ выделяется на поверхности дрожжинок в виде маленьких пузырьков, которые постепенно’ увеличиваются в объеме, затем постепенно всплывают на поверх­ность чана, увлекая приставшие к ним дрожжинки.

При соприкосновении с поверхностью пузырьки углекислоты лопаются, а дрожжинки, имеющие удельный вес 1,1, т. е. боль­ший, чем у сусла (1,025), опускаются вниз, пока снова не будут подняты углекислотой на поверхность. Непрерывное движение дрожжинок вверх и вниз способствует перемещению потоков жидкости в бродильном чане, создавая перемешивание или «бро­жение» жидкости. Выделяющаяся на поверхности жидкости углекислота из бродильных чанов по трубе 13 поступает на уста­новку для получения жидкой или твердой углекислоты, исполь­зуется для получения химических продуктов (например, моче­вины) или выпускается в атмосферу.

Частично сброженное древесное сусло вместе с дрожжами передается из головного бродильного чана в хвостовой чан 12, Где брожение и заканчивается. Поскольку концентрация сахарз в хвостовом чане небольшая, брожение в нем идет менее интен­сивно, и часть дрожжей, не успевая образовать пузырьки угле­кислоты, оседает на дно чана. Чтобы не допустить этого, в хвос­товом чане устраивают часто принудительное перемешивание жидкости мешалками или центробежными насосами.

Бродящая или сброженная жидкость называется бражкой. По окончании брожения бражка передается в сепаратор 14, ра­ботающий по принципу центрифуги. Попадающая в него бражка вместе со взвешенными в ней дрожжами начинает вращаться со скоростью 4500—6000 оборотов в минуту. Центробежная сила вследствие разности удельных весов бражки и дрожжей разде­ляет их. Сепаратор делит жидкость на два потока: больший, не содержащий дрожжей, поступает в воронку 16 и меньший, содер­жащий дрожжи, поступает через воронку в трубу 15. Обычно первый поток в 8—10 раз больше, чем второй. По трубе 15 дрож­жевая суспензия возвращается в головной бродильный чан 11 Через дрожжанку 44. Сброшенное и освобожденное от дрожжей сусло собирается в промежуточном сборнике бражки 17.

При помощи сепараторов дрожжи постоянно циркулируют в замкнутой системе бродильной установки. Производительность сепараторов 10—35 м3/час.

Во время брожения и особенно при сепарации часть содержа­щихся в древесном сусле гуминовых коллоидов коагулируется, образуя тяжелые хлопья, медленно оседающие на дно бродиль­ных чанов. В днищах чанов устроены штуцеры, через которые осадок периодически спускается в канализацию.

Как уже указывалось выше, теоретический выход спирта из 100 кг сброженных гексоз составляет 64 л. Однако практически вследствие образования за счет Сахаров побочных продуктов (глицерин, уксусный альдегид, янтарная кислота и т. д.), а также из-за присутствия в сусле вредных для дрожжей примесей выход спирта составляет 54—56 л.

Для получения хороших выходов спирта необходимо все вре­мя дрожжи поддерживать в активном состоянии. Для этого сле­дует тщательно выдерживать заданную температуру брожения, концентрацию водородных ионов, необходимую чистоту сусла и оставлять в бражке перед поступлением ее на сепаратор не­большое количество гексоз, так называемый «недоброд» (обычно не более 0,1 %’ сахара в растворе). Благодаря наличию недоброда дрожжи все время остаются в активной форме.

Периодически гидролизный завод останавливают на планово — предупредительный или капитальный ремонт. В это время дрож­жи следует сохранять в живом виде. Для этого суспензию дрож­жей при помощи сепараторов сгущают и заливают холодным древесным суслом. При низкой температуре брожение резко за­медляется и дрожжи потребляют значительно меньше сахара.

Бродильные чаны емкостью 100—200 м3 обычно изготовляют­ся из листовой стали или, реже, из железобетона. Продолжитель­ность брожения зависит от концентрации дрожжей и составляет от 6 до 10 часов. Необходимо следить за чистотой производствен­ной культуры дрожжей и предохранять ее от инфицирования посторонними вредными микроорганизмами. Для этой цели все оборудование необходимо содержать в чистоте и периодически подвергать стерилизации. Наиболее простым способом стерили­зации является пропарка всего оборудования и особенно трубо­проводов и насосов острым паром.

По окончании брожения и отделения дрожжей спиртовая бражка содержит от 1,2 до 1,6% этилового спирта и около 1% пентозных Сахаров.

Выделяют спирт из бражки, очищают и укрепляют его в трех­колонном брагоректификационном аппарате, состоящем из браж — ной 18, ректификационной 22 и метанольной 28 колонн (рис.77).

Бражка из сборника 17 насосом подается через теплообмен­ник 41 на питающую тарелку бражной колонны 18. Стекая по тарелкам исчерпывающей части бражной колонны вниз, бражка встречает на своем пути поднимающийся вверх пар. Последний, постепенно обогащаясь спиртом, переходит в верхнюю, укрепляю­щую часть колонны. Стекающая вниз бражка постепенно осво­бождается от спирта, а затем из кубовой царги колонны 18 по трубе 21 переходит в теплообменник 41, где нагревает поступаю­щую в колонну бражку до 60—70е. Дальше бражку нагревают до 105° в колонне острым паром, поступающим по трубе 20. Осво­божденная от спирта бражка называется «бардой». По трубе 42 Барда выходит из бардяного теплообменника 41 и направляется в дрожжевой цех для получения из пентоз кормовых дрожжей. Этот процесс в дальнейшем будет подробно рассмотрен.

Бражная колонна в верхней укрепляющей части заканчивает­ся дефлегматором 19, в котором конденсируются пары ьод — носпиртовой смеси, поступающие с верхней тарелки ко­лонны.

В 1 м3 бражки при температуре 30° растворяется около 1 мъ углекислого газа, образовавшегося при брожении. При нагрева­нии бражки в теплообменнике 41 и острым паром в нижней части бражной колонны растворенная углекислота выделяется и вместе с парами спирта поднимается в укрепляющую часть колонны и далее в дефлегматор 19. Неконденсирующиеся газы отделяются через воздушники, установленные на трубопроводах спиртового конденсата после холодильников. Низкокипящие фракции, со­стоящие из спирта, альдегидов и эфиров, проходят через дефлег­матор 19 и окончательно конденсируются в холодильнике 39у Откуда в виде флегмы стекают обратно в колонну через гидро­затвор 40. Неконденсирующиеся газы, состоящие из углекислого газа, перед выходом из холодильника 39 проходят дополнитель­ный конденсатор или промываются в скруббере водой для улав­ливания последних остатков спиртовых паров.

На верхних тарелках бражной колонны в жидкой фазе содер­жится 20—40% спирта.

Конденсат по трубе 25 поступает на питающую тарелку рек­тификационной колонны 22. Эта колонна работает аналогично бражной колонне, но на более высоких концентрациях спирта. В нижнюю часть этой колонны по трубе 24 подается острый пар, который постепенно вываривает спирт из спиртового конденсата, стекающего в низ колонны. Освобожденная от спирта жидкость, называемая лютером, по трубе 23 уходит в канализацию. Содер­жание спирта в барде и лютере составляет не более 0,02%.

Над верхней тарелкой ректификационной колонны устанавли­вается дефлегматор 26. Не сконденсировавшиеся в нем пары окончательно конденсируются в конденсаторе 26а и стекают об­ратно в колонну. Часть низкокипящих фракций отбирается по трубе 43 в виде эфироальдегидной фракции, которая возвращает­ся в бродильные чаны, если она не имеет применения.

Для освобождения этилового спирта от летучих органических кислот в колонну подается из бака 45 10%-ный раствор едкого натра, который нейтрализует кислоты на средних тарелках укре­пляющей части колонны. В средней части ректификационной ко­лонны, где крепость спирта составляет 45—50%, накапливаются сивушные масла, которые отбираются по трубе 46. Сивушные масла представляют собой смесь высших спиртов (бутиловый, пропиловый, амиловый), образовавшихся из аминокислот.

Этиловый спирт, освобожденный от эфиров и альдегидов, а также сивушных масел, отбирается при помощи гребенки с верхних тарелок укрепляющей части ректификационной колон­ны и по трубе 27 поступает на питающую тарелку метанольной колонны 28. Спирт-сырец, поступающий из ректификационной колонны, содержит около 0,7% метилового спирта, который обра­зовался при гидролизе растительного сырья и вместе с моноса­харидами попал в древесное сусло.

При брожении гексоз метиловый спирт не образуется. По техническим условиям на этиловый спирт, вырабатываемый ги­дролизными заводами, в нем должно содержаться не более 0,1% метилового спирта. Исследования показали, что легче всего мети­ловый спирт отделяется из спирта-сырца при минимальном со­держании в нем воды. По этой причине в метанольную колонну подают спирт-сырец с максимальной крепостью (94—96% эта­нола). Выше 96%’ этиловый спирт получить на обычных ректифи­кационных колоннах нельзя, так как этой концентрации отвечает состав нераздельнокипящей водоспиртовой смеси.

В метанольной колонне легкокипящей фракцией является ме­танол, который поднимается в верхнюю часть колонны, укреп­ляется в дефлегматоре 29 и по трубе 30 сливается в сборники метанольной фракции, содержащей около 80% метанола. Для выпуска товарного 100%-ного метанола устанавливается вторая метанольная колонна, не показанная на рис. 77.

Этиловый спирт, стекая по тарелкам, опускается в нижнюю часть метанольной колонны 28 и по трубе 33 сливается в прием­ники готовой продукции[2]. Обогревают метанольную колонну глу­хим паром в выносном подогревателе 31, который установлен таким образом, что по принципу сообщающихся сосудов его меж­трубное пространство залито спиртом. Поступающий в подогре­ватель водяной пар нагревает спирт до кипения и образующиеся спиртовые пары идут на обогрев колонны. Пар, поступающий в подогреватель 31, конденсируется в нем и в виде конден­сата подается в сборники чистой воды или сливается в кана­лизацию.

Количество и крепость полученного этилового спирта измеряют в специальной аппаратуре (фонарь, контрольный сна­ряд, мерник спирта). Из мерника паровым насосом этиловый спирт подают за пределы главного корпуса — в стационарные цистерны, располженные в складе спирта. Из этих цистерн по мере необходимости товарный этиловый спирт переливают в железнодорожные цистерны, в которых отвозят его к местам потребления.

Описанный выше технологический процесс дает возможность получать из 1 т абсолютно сухой хвойной древесины 150—180 л 100%-ного этилового спирта. При этом на 1 дкл спирта расхо­

Дуется:

Абсолютно сухой древесины в кг. . . . . 55—66;

TOC o "1-3" h z серной кислоты — моаоидрата в кг … . 4,5;

Извести негашеной, 85%-ной в кг…………………………………………………. 4,3;

Пара технологического 3- и 16-атмосферного

В мегакалориях. ………………………………………………………………………….. 0,17—0,26;

Воды в м3……………………………………………………………………………………………. 3,6;

Элекгрознер в квт-ч.…………………………………………………………………….. 4,18

Годовая производительность гидролизно-спиртового завода средней мощности по спирту составляет 1 —1,5 млн. дал. На этих заводах основным продуктом является этиловый спирт. Как уже указывалось, одновременно с ним из отходов основного произ­водства на гидролизно-спиртовом заводе вырабатывается твердая или жидкая углекислота, фурфурол, кормовые дрожжи, продукты переработки лигнина. Эти производства будут рассмотрены в дальнейшем.

На некоторых гидролизных заводах, получающих в качестве основного продукта фурфурол или ксилит, после гидролиза бога­тых пентозами гемицеллюлоз остается трудногидролизуемый остаток, состоящий из целлюлозы и лигнина и носящий название целлолигнина.

Целлолигнин может быть гидролизован перколяционным ме­тодом, как описано выше, и полученный гексозный гидролизат, обычно содержащий 2—2,5% Сахаров, может быть переработан по описанной выше методике в технический этиловый спирт или кормовые дрожжи. По этой схеме перерабатывается хлопковая шелуха, кукурузная кочерыжка, дубовая одубина, подсолнечная лузга и т. д. Такой производственный процесс является экономи­чески выгодным только при дешевом сырье и топливе.

На гидролизно-спиртовых заводах обычно получается техни­ческий этиловый спирт, используемый для последующей химиче­ской переработки. Однако в случае необходимости этот спирт
сравнительно легко очищается путем дополнительной ректифи­кации и окисления щелочным раствором перманганата. После та­кой очистки этиловый спирт вполне пригоден для пищевых целей.

Комментирование и размещение ссылок запрещено.

Спирт из опилок в домашних условиях: технология производста биотоплива

Ограниченность запасов добываемых топливных ресурсов подталкивает человечество к поиску, выявлению и освоению альтернативных способов получения энергии. Наиболее перспективным направлением подобных изысканий становится получение замены газу и нефти из возобновляемых источников растительного происхождения. После биологической или термохимической обработки растительной массы получают биотопливо.

Одним из вариантов жидкого биотоплива является спирт из опилок. Такой способ применения отходов деревообработки – опилки – заменяет картофель и зерно при производстве спиртов. Для использования в получении спирта, 1 кг опилок равносилен 1 кг картофеля или 0,3 кг зерна. Очевидно, что такая замена сырья помогает сберечь в государственных масштабах огромные объемы пищевого сырья и освободить дополнительные площади для сельскохозяйственного производства.

Как сделать спирт из опилок

«Строительным» материалом растительных клеток дерева является твердая волокнистая клетчатка (целлюлоза). Ее содержание в растениях доходит до 70%. В клетчатке много полисахаридов, которые при определенном химическом воздействии переходят в глюкозу. Из последней после сбраживания и перегонки получают спирт. Значит, биомасса мелких опилок и древесной стружки из отходов превращается в ценное сырье для производства спирта – этанола или бутанола.

Получение этилового спирта можно реализовать следующими способами:
  1. Гидролиз измельченной древесной биомассы и последующее сбраживание полученного продукта с дрожжами. Это наиболее распространенный метод переработки опилок.
  2. Газификация древесины методом пиролиза и дальнейшее сбраживание образованного газа в спирт.
  3. Синтез газа при пиролизном разложении клетчатки опилок. Затем из газа получают метанол, который в результате реакции гомологенизации преобразуется в этанол.
При реализации данных способов получения спирта, средний выход готового продукта из 1 т древесного сырья: 220 л – гидролизная переработка, 380-400 л – пиролизная.

Промышленное получение спирта

Производство спирта из древесных опилок на промышленной основе осуществляется двумя способами гидролиза. При любом из них опилки не требуют дополнительной подготовки, кроме максимально возможного измельчения.

В первом случае опилки в вертикальном бункере заливаются концентрированным (40%) раствором серной кислоты. Массовые объемы опилок и раствора равны. Смесь герметично закрытого бункера доводят до температуры 220-250°С и регулярно перемешивая выдерживают от 1 ч до 1 ч 20 мин. Затем полученные при гидролизе растворы глюкозы и серной кислоты сцеживают. К слитой в другую емкость жидкости добавляют раствор мела для нейтрализации кислоты. Последующей фильтрацией отделяют раствор глюкозы от отходов.

Метод не стал распространенным из-за высокой стоимости и повышенных требований к материалу применяемого оборудования, который должен выдерживать агрессивное воздействие концентрированной серной кислоты.

При втором, менее затратном, способе применяется слабый (0,5-1,0%) раствор кислоты. Процесс протекает 1,2-1,5 ч при температурах 160-190°С и давлении в бункере до 15 атм.

Общие моменты для рассмотренных методов гидролиза:

  • Рабочие емкости изнутри выкладывают кислотоупорным материалом для исключения контакта кислоты с металлом.
  • Загруженные в бункеры вещества нагревают с помощью подачи внутрь горячего пара. Выпускным клапаном для пара регулируют внутреннее давление рабочей емкости.
  • Гидролиз с успехом применяют для переработки опилок любых пород древесины.
  • Полученная после химической реакции глюкоза используется для дальнейшего изготовления спирта, метанола, сахара.
  • Рабочий процесс сопровождается выделением опасных газов. Для безопасности работников производственные помещения обязаны проветриваться, а сам персонал работает в специальных защитных респираторах и очках.

При производстве биотоплива из древесных опилок, получают побочные вещества, способные принести дополнительную прибыль:

  • Лигнин – связующее вещество для получения пеллет и евродров из опилок и других измельченных материалов, активный наполнитель для пластмасс и синтетических каучуков.
  • Фурфурол – жидкость, используемая как антисептик для древесины и компонент противогрибковых медикаментов. Также применяется для очистки масел и нефти, производства пластмасс, получения гербицидов, синтетических волокон и красителей. Другие свойства и перспективные варианты применения фурфурола изучаются.
  • Скипидар.
  • Алебастр.

Очистка раствора глюкозы

Процесс очистки проходит поэтапно:

  1. Сепараторная механическая очистка. На данном этапе из раствора выделяют лигнин.
  2. Нейтрализация серной кислоты при помощи обработки известковым молоком.
  3. Разделение раствора глюкозы и карбонатов (нужны при получении алебастра) отстаиванием.

Домашний способ получения спирта

Получить спирт из опилок можно в домашних условиях, и также двумя способами.

Первый способ не требует наличия сложного оборудования, но является очень долгим (иногда неудачным) процессом, занимающим до 2-х лет. Собранные в кучу опилки поливают водой и оставляют преть под пленкой. Внутри кучи начинает повышаться температура и создаются условия для активизации процесса гидролиза с последующим получением глюкозы из клетчатки опилок. Технология дальнейшего использования глюкозы для брожения и получения спирта общеизвестна.

Главный недостаток естественного гидролиза – зависимость скорости протекания химических реакций от окружающей температуры, при значительном понижении которой процесс полностью прекращается. Также не исключается вероятность перерождения ожидаемого процесса в нежелательное гниение.

Второй способ копирует заводскую технологию. Сначала самостоятельно или на заказ делают уменьшенные аналоги промышленных установок. В качестве материала для них используют только нержавеющую сталь. Она стойкая к агрессивному воздействию слабого кислотного раствора.

Содержимое установки нагревают с помощью змеевика с циркулирующим разогретым паром (может применяться воздух) или на открытом огне. Регулируя внутреннее давление рабочей камеры, запускают процесс гидролиза. Рекомендуемые значения для эффективности протекания химической реакции – 7-10 атм.

Далее, как и при заводском производстве, из раствора механическим методом удаляется лигнин, затем нейтрализуется кислота и раствор отстаивается для оседания карбонатов. После очистки раствор глюкозы готов для последующего сбраживания.

Брожение и перегонка

При последующем брожении глюкоза разлагается на спирт и углекислый газ. Для активизации процесса в домашних и промышленных условиях к раствору глюкозы добавляются дрожжи. Температура окружающей среды и порода древесины определяет время брожения – 5-14 суток. Окончание брожения определяется по значительному снижению интенсивности выделения газа. Визуально это характеризуется малым количеством поверхностной пены из пузырьков с углекислотой.

Последний технологический процесс – перегонка. Полученный жидкий материал нагревают до 70-80°С и выходящий пар охлаждают до выпадения спиртового конденсата. Для охлаждения пара, его пропускают через змеевик, который имеет водяное или воздушное наружное охлаждение.

После дальнейших 2-х-4-х перегонок готового продукта его крепость доводится до 80% и более. Теперь полученный спирт может называться биотопливом, на котором смогут эффективно работать двигатели внутреннего сгорания.

Остатки перегонки – скипидар и дрожжевая масса, пригодная для повторного сбраживания следующей партии рабочего раствора и приготовления кормовых дрожжей для животноводческих фермерских хозяйств.

Применение биотоплива

Биотопливо из опилок – биоэтанол – применяют для двигателей разнообразной техники. При такой замене бензину работа агрегата улучшается, увеличивается его мощность, снижается температура нагрева при нагрузках, увеличивается эксплуатационный ресурс поршней и клапанов, так как при сгорании спирта нет сажи и дыма.

Этанол сделал возможным использование каминов в квартирах многоэтажек без привычного дымохода. Теплопотери при обогреве отсутствуют, дым и сажа не образуются, количество выделяемого углекислого газа незначительное.

Производство этилового спирта из древесины


    Ниже приведена схема различных промышленных способов получения уксусной кислоты и ее ангидрида. В эту схему не включено производство уксусной кислоты сухой перегонкой древесины, образование кислоты при окислении низших парафинов воздухом и получение уксусной кислоты брожением этилового спирта. Ацетальдегид, являющийся основным исходным продуктом при получении уксусной кислоты, обычно производят из этилового спирта или ацетилена. В последнее время дополнительным источником уксусной кислоты становится ацетальдегид, образующийся при окислении низших парафинов. [c.334]

    ПРОИЗВОДСТВО этилового СПИРТА из ДРЕВЕСИНЫ [c.319]

    До недавнего времени производство этилового спирта основыва- лось на пищеиом сырье — сбраживание крахмала из некоторых Черновых культур и картофеля с помощью ферментов, вырабатываемых дрожжевыми грибками. Этот способ сохранился и до сих тор, но он связан с большими затратами пищевого сырья и в свя-И1 с растущим потреблением спирта не может удовлетворить промышленность. Другой метод, также основанный на переработке растительного сырья, заключается в гидролизе древесины (гидролизный спирт). Древесина содержит до 50% целлюлозы, и при ее гидролизе водой в присутствии серной кислоты образуется глюкоза, которую подвергают затем спиртовому брол ению  [c.188]

    Сюда относятся гидролизная промышленность (производство этилового спирта гидролизом древесины), крахмало-паточное, пивоваренное и другие производства, где используются процессы брожения. [c.19]

    Химизация народного хозяйства имеет двоякое значение. Во-первых, она усовершенствует технологию производственных процессов, заменяя механические операции химическим воздействием. Во-вторых, знание химии позволяет более разумно использовать природные ресурсы и создавать новые материалы с необходимыми свойствами. Химический метод производства характеризуется более высокой интенсивностью, производительностью труда, он легче поддается механизации и автоматизации. Тем самым возникает возможность существенно экономить затраты труда и снижать себестоимость выпускаемой продукции. Достаточно сказать, что капрон в 10 раз, а вискоза в 100 раз дешевле натурального шелка. Химическая переработка древесины позволяет полностью исключить отходы производства, причем в производстве этилового спирта 1 м древесины заменяет 275 кг зерна или 700 кг картофеля. Возможность создания искусственных полимеров из продуктов нефтепереработки, природных и попутных газов, а также отходов коксохимии позволяет в огромных количествах экономить пищевое сырье. Известное выражение М. Бертло о том, что химия сама создает собственный объект исследования, теперь приобрело особое значение. Начиная с середины XX в. химикам удалось создать материалы, подобных которым не существует в природе. Например, производство волокна началось с природной целлюлозы, затем перешло к ее химически модифицированным формам (вискоза, ацетатный шелк), а в конечном итоге сделало скачок к синтетическим материалам на принципиально новой основе (полиэфиры, полиамиды, полиакрилонитрил). [c.12]


    В СССР был впервые разработан и внедрен в промышленность метод производства этилового спирта посредством гидролиза древесины, т. а. из непищевого сырья, а также прямой гидратации этилена. [c.337]

    Применение рассмотренных выше процессов в промышленности для производства этилового спирта зависит от конкретных техникоэкономических условий. Этиловый спирт получают также при помощи традиционных процессов брожения углеводов хлебных злаков, мелассы (кормовой патоки) и из древесины. [c.198]

    В качестве сырья для производства этанола в различных странах используют доступные растительные источники зерновые, картофель и свекловичная меласса — в России, Украине, Беларуси сахарозу и тростниковую мелассу — в США, рис — в Японии и т. д. В принципе любой источник гексозанов может быть использован в качестве сырья для получения этилового спирта, например, целлюлоза в древесине хвойнж, соломе, торфе и пр. Поэтому сульфитные щелока — отходы целлюлозно-бумажной промышленности нашли широкое применение в производстве этилового спирта. [c.395]

    Производство спиртов гидратацией олефинов — одна из важнейших отраслей нефтехимической промышленности. Вместе с тем большое количество спиртов получается на основе окиси углерода и водорода и продуктов взаимодействия

Спирт из древесины - Жизненные формы растений

Спирт из древесины

А. А. Цветков

Вероятно, не один школьник, отвечая урок по химии, называл спирт из древесины древесным спиртом. Кто же, в самом деле, не скажет, что если спирт получен из древесины, значит это и есть древесный спирт?

Оказывается, однако, что спирт из древесины и древесный спирт — это два разных вещества.

Давно уже из дерева, путём сухой перегонки, наряду с другими веществами получают метиловый спирт СН3ОН. По способу получения ему дано было ещё название древесного спирта. И хотя этот спирт сейчас в промышленности получают преимущественно другим способом — синтезом из окиси углерода и водорода
СО + 2Н3 → СН3ОН
Его и теперь нередко называют древесным спиртом.

Но что же тогда подразумевают под «спиртом из древесины»? Здесь речь идёт о ближайшем гомологе метилового спирта-винном или этиловом спирте С2Н3ОН. И получают этот спирт не сухой перегонкой, а посредством совершенно других химических процессов — гидролиза древесины, т. е. разложения её в присутствии кислоты водой и последующего сбраживания образующегося продукта.

Что метиловый и этиловый спирты — два разных вещества, это можно видеть и по их составу (разное число атомов углерода и водорода в молекулах), и по разным температурам кипения и затвердевания, и по ряду других свойств. Но, пожалуй, самое разительное различие состоит в их физиологическом действии: метиловый спирт сильно ядовит и, будучи принят внутрь организма даже в небольших количествах, вызывает смертельный исход или потерю зрения.

Чтобы не путать названия веществ и точно знать, о каком спирте идёт речь, спирт из древесины (этиловый спирт) чаще называют гидролизным спиртом.

О производстве гидролизного спирта мы и хотим здесь рассказать.

Ещё в 1811 г. русский химик К. С. Кирхгоф установил, что крахмал при нагревании с раствором серной кислоты подвергается гидролизу, превращаясь в патоку или в глюкозу. Вскоре на использовании этой реакции возникла целая отрасль пищевой промышленности — крахмала-паточное производство'.

Клетчатка, или целлюлоза, имеет тот же состав, что и крахмал — (С6Н10О5). Естественно возникает вопрос: не обладает ли и она свойством подвергаться гидролизу?

Вскоре после открытия гидролиза крахмала почти одновременно русский химик Н. Фогель и французский учёный Г. Браконно сумели осуществить гидролиз клетчатки, нагревая её с раствором кислоты. Но лишь через много десятилетий, только в самые последние годы XIX в. появились первые полупромышленные установки по гидролизу древесины в Германии и в России. Впервые в мире крупное развитие гидролизная промышленность получила в нашей стране в годы пятилеток.

Техническое осуществление гидролиза древесины было сопряжено с большими трудностями. Они прежде всего заключались в большом расходе кислоты и сложности её регенерации для дальнейшего использования. Производство оказывалось более дорогим, чем получение спирта из крахмала картофеля и зерна.

Однако всё возраставший спрос на этиловый спирт, особенно со стороны промышленности синтетического каучука, и необходимость сбережения пищевых ресурсов требовали освоения новых источников сырья. Это сырьё в громадных количествах накапливалось на деревообрабатывающих заводах в виде отходов древесины - опилок, стружек, щепы и т. д., требовавших рационального использования их в целях экономии производства.

Подобно тому, как бензин из бесполезного когда-то отхода нефтепереработки превратился в продукт первой необходимости или каменноугольная смола из неприятного отброса стала ценнейшим источником ароматических соединений, отходы лесопиления, загромождавшие заводы и часто сжигавшиеся без нужды, стали использоваться для химической переработки.

Открылись более широкие возможности и для использования минеральных кислот в гидролизном производстве, так как мощного развития достигла основная химическая промышленность. Гидролизный спирт стал более дешёвым, чем спирт из зерна и картофеля.

Как велико значение гидролизного производства в сбережении пищевых ресурсов, можно видеть из следующего. Производство миллиона литров спирта путём гидролиза древесины высвобождает 3 тыс. т хлеба или 10 тыс. т картофеля.

Для такой замены потребуется лишь 10 тыс. т опилок, что легко может дать за год работы один лесопильный завод. Иными словами, тонна опилок при производстве спирта заменяет тонну картофеля

Экономическое значение гидролизного производства сильно возрастает ещё оттого, что одновременно со спиртом получаются другие ценные продукты — кормовые дрожжи, заменители дубильных веществ, литейные крепители, фурфурол, сухой лёд и т. д.

Особенно важно отметить получение кормовых дрожжей, богатых белками и представляющих огромную ценность для животноводства. Кормовых дрожжей может быть получено примерно до 200 т при производстве каждого миллиона литров спирта.

Проследим теперь, как же получают на гидролизном заводе спирт из древесины.

Весь производственный процесс слагается из трёх основных стадий:

а) гидролиз клетчатки (целлюлозы) до глюкозы, выражаемый, как известно, уравнением:

6H12О5)n + пН2О → nС6H12O6

б) сбраживание глюкозы в спирт в присутствии дрожжей:

С6Н12О6 — 2С2Н5ОН + 2СО2

в) выделение спирта из продуктов брожения.

Установлено, что первую стадию — гидролиз клетчатки – можно осуществлять достаточно быстро и полно, если для реакции применить в качестве катализатора разбавленную серную кислоту, а также нагревание до 180 — 185 ° и давление 10 — 12 атм. (Гидролиз может быть осуществлен и при других условиях. На некоторых заводах его ведут, например, в присутствии концентрированной соляной кислоты при,обычной температуре.)

Чтобы провести реакцию при таких «жёстких» условиях, применяют автоклав из толстой листовой стали, рассчитанный на повышенное давление'и выложенный внутри слоем бетона и керамическими плитками для защиты от кислоты. По типу реакции, осуществляемой в автоклаве, он называется ещё гидролизёром.

Гидролизёр по виду представляет собой высокий цилиндр с конической частью вверху и внизу. Емкость его до 50 м3. Через верхнюю горловину в гидролизёр загружаются при помощи транспортёра щепа и опилки. После загрузки горловина герметически закрывается крышкой. раствор кислоты подаётся по специальному трубопроводу, оканчивающемуся в аппарате разбрызгивателем; проникая сверху внизу, кислота равномерно смачивает всю загруженную древесную массу.

Нагревание смеси до нужной температуры осуществляется перегретым паром, поступающим по трубопроводу снизу. Спуск избыточного давления из аппарата производится через особое отверстие в верхней горловине. Процесс «варки» одной загрузки в автоклаве длится несколько часов.

Образующийся при гидролизе раствор, с содержанием 3 — 4% сахара, называемый гидролизатом, выводится из аппарата снизу по трубопроводу.


Рис. 1. Гидролизёр.

Остаток неразложпвшейся массы — технического лигнина по окончании процесса «выстреливается» из аппарата под давлением 7 — 8 атм через нижнюю горловину, закрываемую задвижкой. После сушки лигнин может быть использован в производстве пластмасс, пористого кирпича (в смеси с глиной), сухой штукатурки, в качестве наполнителя при производстве резины или в виде топлива.

Интересно устроено в гидролизёре приспособление для фильтрования отводимого раствора. Так как в аппарат загружается измельчённая древесная масса, то она, не будучи задерживаемой, конечно, легко уносилась бы вместе с раствором и быстро засоряла бы жидкостные коммуникации. Приспособить в автоклаве какой-либо фильтр, который должен работать в условиях повышенного давления и действия горячей кислоты, дело нелёгкое. Проблема была разрешена следующим образом. В гидролизёре по нижней конусной его части проложены наклонные трубки с отверстиями, прикрытые снаружи чешуйками. Чешуйки, обращённые вниз, не дают возможности древесной массе (опилкам) попадать в отверстия, гидролизат же свободно проходит в них. Проникшая в трубки жидкость стекает по ним в общий кольцевой канал, из которого и выводится по трубопроводу наружу.

Общая схема гидролизного производства, в основных его частях, представлена на рис. 2


Рис. 2. Схема гидролизного производства

Из гидролизёра 1 лигнин поступает в циклон 2, а гидролизат — в испаритель 3. Назначение испарителя — выделить из раствора сахара летучие побочные продукты гидролиза. Так как давление в испарителе меньше, чем в автоклаве, гидролизат вскипает, и из него улетучиваются скипидар, метиловый спирт и другие вещества, которые затем улавливаются.

Следующей стадией производства должно быть получение спирта из сахара (глюкозы). Однако гидролизат даже после выделения из него летучих продуктов ещё нельзя пустить на сбраживание, так как в нём содержится много кислоты.

Поэтому, далее, он поступает в нейтрализатор 4, куда из мерника 5 подаётся известковое молоко. В результате взаимодействия серной кислоты с гидратом окиси кальция раствор становится нейтральным.

Н2SO4 + Са (ОН)2 = СаSO4 + 2Н2О

Для отвода выделяющихся при экзотермической реакции паров нейтрализатор имеет вытяжную трубу. Чтобы реакция нейтрализации шла быстрее и полнее использовался гидрат окиси кальция, в нейтрализатора вращается мешалка.

После нейтрализации возникает необходимость отделить гидролизат от осадка сернокислого кальция. Для этого он подается в отстойник 6, где выпадает основная часть соли, и, далее, после дополнительного охлаждения в градирне (на рисунке не показана) и в теплообменнике 7, — на фильтрпресс 8 для окончательной очистки.

После фильтрования раствор сахара подаётся в бродильный чан 9 ёмкостью 100 — 200 м3. Из сепаратора 10 сюда же поступает «дрожжевое молоко». Для нормальной жизнедеятельности дрожжей нужна температура 30°, поэтому раствор и подвергался ранее охлаждению. Процесс брожения сахара под действием фермента, вырабатываемого дрожжами, длится около 5 часов.

При больших масштабах производства реакция брожения одновременно является источником получения значительных количеств углекислого газа, из которого готовят «сухой лёд», широко применяющийся в качестве холодильного средства.

Раствор после брожения — бражка — с содержанием около 1,5% спирта поступает в сепаратор, где отделяется от дрожжей. Дрожжи снова идут на приготовление «дрожжевого молока» и вновь загружаются в бродильный чан (осуществляется циркуляционный процесс). Раствор же спирта после сепаратора собирается в сборник 11, откуда идёт на дальнейшую переработку-отделение его от примесей.


Рис.3. Верхняя часть гидролизёра

Третья стадия производства — выделение спирта из бражки и очистка его — осуществляется в колонных аппаратах (на рисунке не показаны), напоминающих по устройству и действию ректификационные колонны нефтеперегонных заводов.

Сначала нагретая бражка поступает на верхние тарелки бражной колонны. Из бражки здесь испаряются спирт и другие летучие вещества, смесь их паров поступает далее в спиртовую колонну. В нижней части бражной колонны собирается барда, не содержащая спирта, но содержащая некоторое количество не пробродившего сахара, вследствие чего её используют как питательную среду для выращивания кормовых дрожжей, используемых в животноводстве.

В спиртовой колонне, благодаря многократно повторяющимся на тарелках процессам испарения и конденсации, спирт отделяется от таких примесей, как сивушные масла, альдегиды, эфиры.

Чтобы очистить этиловый спирт от наиболее трудно отделимой примеси — метилового спирта, — производят ещё дополнительную ректификационную перегонку.

Нетрудно заметить выше, что при общей непрерывности технологического процесса основной аппарат гидролизного производства (гидролизёр) — это аппарат периодического действия. Непрерывность всего производственного процесса достигается за счёт того, что на заводе работает несколько гидролизёров, в которых процесс гидролиза (а также загрузки и выгрузки) производится в разное время, так что всегда есть гидролизат для последующей переработки.

Таким образом, мы видим, что гидролизное получение спирта из древесины — большой и сложный процесс.

Источник: «Книга для чтения по химии, ч.2». Изд-во министерства просвещения РСФСР, 1956., стр. 426-435


Необычная обложка фантастического романа

Какой представляют читатели обложку фантастического романа? Космической с мириадами звёзд? Да, но это столь избитый приём, что он кажется уже скучным. Загадочной с мордами неизвестных существ? Да, но морды тоже не в новинку, а действительно оригинальных и при этом не вычурных существ в фантастике давно не встречалось. Волшебной с абстрактными образами? Да, но в романе Татьяны Латуковой «Небо в алмазах» нет волшебных сюжетов, это космическая опера в рамках логичной физики, без нарушений второго закона термодинамики.

Розетки на обложке

Стальная мебель

Огромные города и протяжённые трассы дорог через всю страну рождают спрос на ту сферу производства и услуг, что всегда была востребованной, однако её новые масштабы потребовали и новых стандартов качества, и новой культуры производства. Речь об общественном питании. Гигиеническая безопасность - первое и важнейшее условие работы любого продуктового цеха, любой кондитерской фабрики и пиццерии. Де-факто стандартом качества стали столешницы из шлифованной нержавеющей стали, обеспечивающие максимальную биобезопасность...

Нейтральное оборудование из нержавеющей стали

Спирт из опилок древесины (гидролизный спирт) | Бутадиен из этилового спирта | Маномеры

Вы в лесу... Вокруг теснятся толстые и тонкие стволы деревьев. Для химика все они состоят из одного и того же материала — древесины, основной частью которой является органическое вещество — клетчатка (C6H10O5) х. Клетчатка образует стенки клеток растений, т. е. их механический скелет; довольно чистую мы её имеем в волокнах хлопчатой бумаги и льна; в деревьях она встречается всегда вместе с другими веществами, чаще всего с лигнином, почти такого же химического состава, но обладающего иными свойствами. Элементарная формула клетчатки C6H10O5 совпадает с формулой крахмала, свекловичный сахар имеет формулу C12H22O11. Отношение числа атомов водорода к числу атомов кислорода в этих формулах такое же, как и в  воде: 2:1. Поэтому эти и им подобные вещества в 1844 г. были названы «углеводами», т. е. веществами, как бы (но не на самом деле) состоящими из углерода и воды.

Углевод клетчатка имеет большой молекулярный вес. Молекулы её представляют длинные цепи, составленные из отдельных звеньев. В отличие от белых зёрен крахмала, клетчатка представляет прочные нити и волокна. Это объясняется различным, теперь точно установленным, структурным строением молекул крахмала и клетчатки. Чистая клетчатка в технике зовётся целлюлозой.

В 1811 г. академик Кирхгоф сделал важное открытие. Он взял обыкновенный крахмал, полученный из картофеля, и подействовал на него разбавленной серной кислотой. Под действием H2SO4 произошёл гидролиз крахмала и он превратился в сахар:

Эта реакция имела важное практическое значение. На ней основано крахмало-паточное производство.

Но ведь клетчатка имеет ту же самую эмпирическую формулу, что и крахмал! Значит, из неё тоже можно получить сахар.

Действительно, в 1819 г. было впервые осуществлено и осахаривание клетчатки с помощью разбавленной серной кислоты. Для этих целей можно применять и концентрированную кислоту; русский химик Фогель в 1822 г. получил сахар из обычной бумаги, действуя на неё 87-процентным раствором H2SO4.

В конце XIX в. получение сахара и спирта из дерева стало интересовать уже и инженеров-практиков. В настоящее время спирт из целлюлозы получают в заводских масштабах. Способ, открытый в пробирке учёного, стад осуществляться в больших стальных аппаратах инженера.

Посетим гидролизный завод... В огромные варочные котлы (перколяторы) загружают опилки, стружки или щепу. Это — отходы лесопильных или деревообрабатывающих предприятий. Раньше эти ценные отходы сжигались или просто выбрасывались на свалку. Через перколяторы непрерывным током проходит слабый (0,2—0,6%) раствор минеральной кислоты (чаще всего серной). Долго держать одну и ту же кислоту в аппарате нельзя: содержащийся в ней сахар, полученный из древесины, легко разрушается. В перколяторах давление 8—10 ат, а температура 170—185°. При этих условиях гидролиз целлюлозы идёт значительно лучше, чем при обычных условиях, когда процесс весьма затруднителен. Из перколяторов получают раствор, содержащий около 4% сахара. Выход сахаристых веществ при гидролизе достигает 85 % от теоретически возможного (по уравнению реакции).

Дальше сахарный раствор поступает на сбраживание в спирт с помощью дрожжей, с чем мы уже знакомы. Так из дерева получают этиловый спирт. Он называется гидролизным спиртом.

Рис. 8. Наглядная схема получения гидролизного спирта из древесины.

Для Советского Союза, имеющего необозримые лесные массивы и неуклонно развивающего промышленность синтетического каучука, получение спирта из древесины представляет особый интерес. Ещё в 1934 г. XVII съезд ВКП(б) постановил всемерно развивать производство спирта из опилок и отходов бумажной промышленности. Первые советские гидролизно-спиртовые заводы начали регулярно работать с 1938 г. За годы второй и третьей пятилеток у нас были построены и пущены заводы по выработке гидролизного спирта — спирта из древесины. Этот спирт в настоящее время всё в больших количествах перерабатывается в синтетический каучук. Это — спирт из непищевого сырья. Каждый миллион литров гидролизного этилового спирта освобождает для питания около 3 тыс. тонн хлеба или 10 тыс. тонн картофеля и, следовательно, около 600 га посевной площади. Для получения этого количества гидролизного спирта нужно 10 тыс. тонн опилок с 45-процентной влажностью, что может дать за год работы один лесопильный завод средней производительности.

Как получить спирт-ректификат в домашних условиях

Изготовление ректификата технологически отличается от производства благородных крафтовых дистиллятов. Как получить чистый спирт в домашних условиях, я расскажу на очередном уроке «Школы крафта». Сегодня мы обсудим все, что вы хотели знать о домашнем ректификате. Звонок звенит – начинаем урок!

Для получения ректификата требуется специальное оборудование

Чем ректификат отличается от дистиллята?

Прежде, чем я расскажу о тонкостях изготовления ректификата в домашних условиях, задам простой вопрос: «Зачем вам вообще нужен спирт-ректификат?» До сих пор мне приходится сталкиваться с заблуждением, согласно которому спирт-ректификат – вершина чистоты вкуса, а его изготовление – цель каждого мастера крафта. На самом деле, чистый ректификат не пригоден для употребления внутрь, а имеет, скорее, техническое назначение. На его основе делают настои и лекарства, а его водный раствор нам известен как водка. Ректификат серьезно отличается от дистиллята и по технологии изготовления, и по вкусу, и по действию на организм.

Технология

Дистилляция – процесс, в ходе которого спиртовые пары конденсируются на холодной поверхности с последующим выделением из спиртовой смеси нужного комплекса элементов.

В результате дистилляции мы получаем смесь спирта и очищенных масел (ароматических и эфирных).

Ректификация – сложный теплообменный процесс, направленный на выделение одного вещества – этанола – из спирта-сырца.

Вкус

Богатый и насыщенный вкус дистиллятов обеспечивает ароматическая композиция, которая содержится в продукте. Ректификат вкуса не имеет, разве что в водном растворе ощущается резкий морозный оттенок.

Последствия употребления

При употреблении дистиллята внутрь эфирные и ароматические компоненты в их составе позволяют сохранить на клетках крови – эритроцитах – липидную оболочку. Ректифицированный спирт эту липидную оболочку уничтожает. Вам знаком эффект обезжиривания спиртом различных поверхностей? Вот и в нашем организме происходит нечто подобное. В результате употребления ректификатов кровеносные тельца теряют липидную оболочку, которая предохраняет их от склеивания друг с другом. Результат? Эритроциты слипаются в крупные образования и закупоривают кровеносные сосуды. Самое безобидное последствие этого процесса – кислородное голодание организма. Возможны и гораздо более серьезные варианты развития событий – инсульт и инфаркт от закупорки вен и артерий.

Ректификат обычно используют в качестве компонента для приготовления водки, настоек на спирту и в медицинских целях. Но даже в разбавленном виде ректифицированный спирт оказывает на нашу кровь все то же антилипидное воздействие, заставляя кровеносные тельца слипаться. Этот эффект получил медицинское название «эффект виноградной грозди».

Замечу, что употребление дистиллята к таким последствиям не приводит. Отсюда знакомое многим любителям крафта хорошее самочувствие после принятия внутрь домашнего коньяка или виски – никакого похмелья или головной боли. Конечно, если употребление было разумным!

Ректификаты в чистом виде не употребляются, а служат сырьем для других напитков или медицинских настоек

Что нужно для ректификации?

Надеюсь, вы точно знаете, зачем хотите получить чистый спирт-ректификат. Я расскажу, что вам для этого потребуется.

Сырье

Ректификат получают из спирта-сырца крепостью 25–35 градусо

Что такое древесный спирт? Можно ли пить древесный спирт?

Древесный спирт ? Что это? Может быть, спирт сделан из дерева? »

Нет, ответ отрицательный. Древесный спирт может не относиться к здоровому питьевому алкоголю, как вы думаете.

Но что такое древесный спирт на самом деле? Давайте начнем постепенно узнавать об этом больше.

Содержание:

1. Определение древесного спирта

2. Можно ли пить древесный спирт?

№1.Определение древесного спирта - что это такое

Вообще говоря, древесный спирт - это химический спирт, который раньше производился в основном путем деструктивной дистилляции древесины.

Для древесного спирта чаще встречаются названия - Метанол или Метиловый спирт.

Да, древесный спирт - это просто метанол , самый простой спирт. Название звучит знакомо, правда?

На самом деле, мы видели и употребляли древесный спирт каждый день, пока не осознавали.

Для чего используется древесный спирт?

Например, древесный спирт необходим для топливной промышленности.

Различные автомобили, которые мы видим на улице каждый день, их антифриз сделан из древесного спирта.

Древесный спирт также считается лучшей заменой бензина в будущем.

Древесный спирт также можно использовать в процессе производства пестицидов в сельскохозяйственных угодьях. Без древесного спирта резко снизится производство свежих овощей.

Основная цель изготовления древесного спирта - превратить его в формальдегид. Формальдегид - бесцветный газ с сильным запахом.Он используется для изготовления деревянных изделий из таких материалов, как ДСП, фанера и ДВП.

Поскольку он играет важную роль в строительной индустрии, он может применяться для клея и клея для различных материалов. Например, дерево, бумага, даже ткань. Однако формальдегид на самом деле нехороший и ядовитый.

Вот почему мы видим, что продавцы мебели утверждают, что их деревянные изделия, такие как деревянный пол или деревянный стол, не содержат формальдегид.

Существует множество других функций древесного спирта, о которых я не упомянул выше.Если вы хотите узнать больше о применении древесного спирта, обратитесь к разделу об использовании древесного спирта.

№2. Можно ли пить древесный спирт?

Древесный спирт непригоден для питья , хотя это немного сложно из-за того, что название выглядит как слабый алкоголь.

Нельзя пить древесный спирт, потому что он ядовит.

На самом деле, даже увидев и понюхав его, вы тоже подвергнетесь опасности. Не думайте, что это просто чашка маргариты, потому что это древесный спирт.

Если кто-то случайно выпьет древесный спирт, будут серьезные последствия.

Древесный спирт превращается в муравьиную кислоту, а токсин муравьиной кислоты вреден для человеческого организма.

Ацидоз, вызванный муравьиной кислотой, очень серьезен и в конечном итоге приведет к органной недостаточности.

Обычно повреждения, вызванные употреблением древесного спирта, включают:

  • Потеря сознания, головная боль, головокружение
  • Рвота
  • Проблемы со зрением (нечеткое, туннельное, слепота)
  • Повреждение нервов
  • Проблемы с сердцем и кровообращением
  • Повреждение печени
  • Почечная недостаточность

Таким образом, древесный спирт может быть смертельным, если с ним не обращаться должным образом.

Вот несколько полезных советов относительно древесного спирта.

1. Не пейте небезопасный домашний алкоголь

Мы знаем, что некоторые пивовары любят перегонять алкоголь на заднем дворе, что может привести к летальному исходу.

Метод изготовления спиртных напитков - дистилляция позволяет получить содержание метанола, поэтому он запрещен во многих странах.

Поэтому, если вас приглашают выпить чашку домашнего пива, убедитесь, что нет риска отравления древесным спиртом.

2. Что мне делать, если я употребляю древесный спирт

Немедленно обратитесь за медицинской помощью, или вам следует обратиться в больницу или вызвать скорую помощь как можно скорее.

Даже небольшая доза древесного спирта опасна. Даже не думайте, что ваше тело может справиться с этим, вам все равно нужно пройти обследование, даже если нет явных признаков.

Когда люди думают, что они могут отравиться древесным спиртом, рекомендуется выпить большую дозу спирта.

Этот метод дает вам больше времени, чтобы добраться до больницы.

Я не шучу, потому что печень сначала обрабатывает этанол, а этанол ингибирует и замедляет реакцию метанола.

Врачи также используют некоторые профессиональные методы лечения, такие как:

  • Фомепизол
  • Диализ
  • Бикарбонат натрия
  • Фолат
  • Тиамин

Это лечение отравления древесным спиртом в больнице.

.

Вуд любишь выпить? Японская команда изобретает древесный спирт

Сырье? Японские исследователи говорят, что изобрели способ производства алкогольных напитков из вишневых деревьев и других пород дерева.

Разборчивые пьющие вскоре смогут расшириться после того, как во вторник японские исследователи заявили, что они изобрели способ производства алкогольного напитка из дерева.

Исследователи из Японского научно-исследовательского института лесного хозяйства и лесных товаров говорят, что напитки на основе коры обладают древесными свойствами, схожими с алкоголем, который выдерживается в деревянных бочках.Они надеются, что их «древесный спирт» появится на прилавках в течение трех лет.

Метод включает измельчение древесины в кремообразную пасту с последующим добавлением дрожжей и фермента для запуска процесса ферментации.

По словам исследователей, избегая использования тепла, они могут сохранить особый аромат древесины каждого дерева.

Пока производятся напитки из кедра, березы и вишни.

Четыре килограмма (8,8 фунта) кедровой древесины дали им 3,8 литра (восемь пинт) жидкости с содержанием алкоголя около 15 процентов, что аналогично таковому в всеми любимом японском саке.

Исследователи экспериментировали как с пивоваренной, так и с дистиллированной версиями нового напитка, но «мы думаем, что дистиллированный спирт выглядит лучше», - сказал AFP исследователь Кенго Магара.

Ферментация древесины уже используется для производства биотоплива, но продукт содержит токсины и не имеет запаха, что делает его далеко не подходящим компонентом коктейля.

«Но наш метод может сделать его пригодным для питья и с древесным ароматом, потому что он не требует высоких температур или серной кислоты для разложения древесины», - сказал Магара.

У института есть широкий мандат на научные исследования, связанные с обширными лесами и лесами Японии, но Магара признал, что «древесный спирт» может быть не самым очевидным применением их исследовательских ресурсов.

«Мы подумали, что было бы интересно подумать, что алкоголь можно производить из чего-то здесь, например, деревьев», - сказал Магара.

«Это проект, вдохновленный мечтой».

Государственный институт нацелен на коммерциализацию предприятия с партнером из частного сектора и поставку пиломатериалов на полки в течение трех лет.

«В Японии много деревьев по всей стране, и мы надеемся, что людям понравятся древесные спирты, приготовленные из разных регионов», - сказал Магара.


Производство электроэнергии из биомассы в США возможно, но это будет стоить

© AFP, 2018

Цитата : Вуд любишь выпить? Команда Японии изобретает древесный спирт (1 мая 2018 г.) получено 31 декабря 2020 г. с https: // физ.org / news / 2018-05-wood-japan-team -cohol.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

.

Alcohol Wood Stock Video Videos - Видеоклипы 4K и HD

В настоящее время вы используете более старую версию браузера, и ваш опыт работы может быть не оптимальным. Пожалуйста, подумайте об обновлении. Учить больше. ImagesImages homeCurated collectionsPhotosVectorsOffset ImagesCategoriesAbstractAnimals / WildlifeThe ArtsBackgrounds / TexturesBeauty / FashionBuildings / LandmarksBusiness / FinanceCelebritiesEditorialEducationFood и DrinkHealthcare / MedicalHolidaysIllustrations / Clip-ArtIndustrialInteriorsMiscellaneousNatureObjectsParks / OutdoorPeopleReligionScienceSigns / SymbolsSports / RecreationTechnologyTransportationVectorsVintageAll categoriesFootageFootage homeCurated collectionsShutterstock SelectShutterstock ElementsCategoriesAnimals / WildlifeBuildings / LandmarksBackgrounds / TexturesBusiness / FinanceEducationFood и DrinkHealth CareHolidaysObjectsIndustrialArtNaturePeopleReligionScienceTechnologySigns / SymbolsSports / RecreationTransportationEditorialAll categoriesMusicMusic ГлавнаяПремиумBeatШаблоныШаблоныДомашняя страницаСоциальные медиаШаблоныFacebook ОбложкаFacebook Mobile CoverInstagram StoryTwitter BannerYouTube Channel ArtШаблоны печатиВизитная карточкаСертификатКупонFlyerПодарочный сертификатРедакцияГлавная редакцияEnterta inmentНовостиРоялтиСпортИнструментыShutterstock EditorМобильные приложенияПлагиныИзмерение размера изображенияКонвертер файловСоздатель коллажейЦветовые схемыБлог.

Спиртовые заводы »VOGELBUSCH Biocommodities

Технология производства спирта

Спирт, также называемый этанолом или этиловым спиртом, является ценным основным материалом для различных отраслей промышленности и используется в качестве растворителя для многих веществ. Помимо алкогольных напитков, он применяется в химической, фармацевтической и косметической промышленности, а также используется в качестве присадки к транспортному топливу.

На этой странице вы можете узнать, как производится этанол и как Фогельбуш может внести свой вклад в создание спиртового завода .

Как производится алкоголь?

При ферментации с использованием дрожжей получают спирт из различных сельскохозяйственных материалов, содержащих сахар, крахмал или целлюлозу. На дополнительных этапах процесса он очищается и концентрируется для получения наивысшего и максимально чистого качества.

Ноу-хау и технологии в области производства спирта

Компания Vogelbusch внесла много новаторских усовершенствований в конструкцию завода по производству спирта и предлагает первоклассные, проверенные во всем мире технологии для каждого этапа производства спирта: от подготовки сырья и ферментации до последующего разделения путем дистилляции / установки ректификации и обезвоживания, а также обработки побочных продуктов и вспомогательные установки.

Мы проектируем комплексные установки с нуля, а также можем модернизировать или модернизировать ваш существующий завод для увеличения производительности, повышения урожайности и / или качества продукции и экономии энергии и воды.

Краткий обзор ваших преимуществ
  • Узкоспециализированные индивидуальные решения
  • Эксперт по системной интеграции производственных единиц
  • Экономичные и энергосберегающие функции на всем предприятии
  • Избыточная энергия увеличивает экспорт электроэнергии, вырабатываемой ТЭЦ
  • Опытный поставщик процессов для выполнения EPC-проектов
Виды продукции

В зависимости от конечного использования сорта этанола различаются по чистоте и концентрации

.Векторные изображения Древесный спирт

, Стоковые векторные изображения Древесный спирт

и Роялти-Фри Изображения Древесный спирт | Depositphotos® Набор различных напитков и бутылок на стене. Векторная иллюстрация Набор деревянных бочек с эмблемами алкогольных напитков - векторные иллюстрации Векторный набор - вино и виноделие Бочки с алкогольными напитками Набор различных напитков и бутылок на стене. Векторная иллюстрация. Набор деревянных бочонков с эмблемами алкогольных напитков Винный набор логотип - векторные иллюстрации, эмблемы на темном фоне Еда, вино и виноделие Набор акварельных баннеров для фруктовых коктейлей Винные иконки Винная бочка Винодельческий набор эскизов Набор алкогольных этикеток Пивная этикетка в виде деревянной бочки Пивные значки, логотипы и этикетки для любого применения Набор элегантных винных значков и этикеток.Винтажные шаблоны логотипов на деревянном фоне Набор векторных бочонков алкогольных эмблем Набор векторных бочонков алкогольных эмблем Винтажные премиальные бренды виски Дизайн этикетки Набор различных напитков и бутылок на стене. Векторная иллюстрация. Cocktail party invitation Royalty Free Stock Vectors Приглашение на коктейль Wine list, hand drawn, zentangle stylized wine bottle and glass on wood texture background, vector, illustration. Stock Illustration Винная карта, рисованной, стилизованная бутылка вина zentangle и стекло на фоне текстуры древесины, вектор, иллюстрация. Set of wooden barrels with alcohol drinks Royalty Free Stock Illustrations Набор деревянных бочек с алкогольными напитками Set of Vector Cask Alcohol Emblems Vector Graphics Набор векторных бочонков алкогольных эмблем Set of different drinks and bottles on the wall. Vector illustration. Stock Vector Набор разных напитков и бутылок на стене.Векторная иллюстрация. Glass beer on wooden background Royalty Free Stock Vectors Бокал пива на деревянном фоне Beer house badges logos and labels for any use Stock Illustration Пивной бейджи логотипы и этикетки для любого использования Vector beer label in form wooden barrel Royalty Free Stock Illustrations Векторная этикетка для пива в виде деревянной бочки Set of Vector Cask Alcohol Emblems Vector Graphics Набор векторных бочек для алкогольных эмблем Hand drawn vector set - wine and winemaking Stock Vector Ручной обращается векторный набор - вино и виноделие Set of wooden barrels with alcohol emblems Royalty Free Stock Vectors Набор деревянных бочек с алкогольными эмблемами Wine icon Stock Illustration Вино icon Set of different drinks and bottles on the wall. Vector illustration. Royalty Free Stock Illustrations Набор различных напитков и бутылок на стене. Векторная иллюстрация. Mugs of beer on a wooden table and beer snacks pretzel top view. Vector Graphics Кружки пива на деревянном столе и вид сверху крендель закуски к пиву. Set label of wine Stock Vector Набор этикеток для вина Set Wooden Casks Badges and Cooperage Logo Royalty Free Stock Vectors Набор значков из деревянных бочек и логотипа Cooperage Vector Sketch Illustration - wooden wine barrel with faucet Stock Illustration Векторная иллюстрация эскиза - деревянная винная бочка с краном Hand drawn vector set - wine and winemaking Royalty Free Stock Illustrations Ручной обращается векторный набор - вино и виноделие Set of wine barrel engravings Vector Graphics Набор гравюр на винных бочках Beer label Stock Vector Пивная этикетка Christmas character, Santa Claus snowman, reindeer Royalty Free Stock Vectors Рождественский персонаж, снеговик Санта-Клауса, олень Vintage labels with hand drawn elements - viticulture and winemaking Stock Illustration Винтажные этикетки с нарисованными от руки элементами - виноградарство и виноделие Barrel homebrew emblems Royalty Free Stock Illustrations Эмблемы домашнего пивоварения в бочках Barrel Collection Vector Graphics Коллекция в бочках Beer set with tap, class, can, bottle and tanks from brewery factory. Stock Vector Пивной набор с краном, классом, банкой, бутылкой и емкостями от пивоваренного завода.Front Drawing horisontal cocktail menu design Royalty Free Stock Vectors Фронт Рисунок горизонтальный дизайн меню коктейлей Set of cocktail menu in vintage style Stock Illustration Набор коктейльного меню в винтажном стиле Natural wine and snacks Royalty Free Stock Illustrations Натуральное вино и закуски Summer Beach Party- Vector Watercolor Clipart Vector Graphics Летняя пляжная вечеринка - векторный акварельный клипарт Craft beer logo- vector illustration, emblem brewery design Stock Vector Крафтовое пиво логотип - векторная иллюстрация, дизайн эмблемы пивоварни Barrels label collection set. Royalty Free Stock Vectors Набор для сбора этикеток для бочек. Beer set Stock Illustration Пивной набор Vector pattern with beer mugs, barrels and crayfish Royalty Free Stock Illustrations Векторный рисунок с пивными кружками, бочками и раками Wooden barrel with vine label. Vector Graphics Деревянная бочка с этикеткой из винограда. Hand drawn vector set - wine and winemaking Stock Vector Набор рисованной вектор - вино и виноделие Wine menu Royalty Free Stock Vectors Винная карта Tasting of vintage wines Stock Illustration Дегустация марочных вин Watercolor Cocktail concept design. Corporate identity. Web site design Royalty Free Stock Illustrations Акварельный дизайн концепции коктейля.Фирменный стиль. Дизайн веб-сайта Set of wooden barrels and boxes. Vector Graphics Набор деревянных бочек и ящиков. Wooden barrel with tap. Stock Vector Деревянная бочка с краном. Beer symbol.Vector vintage graphic Illustration of glass with g Royalty Free Stock Vectors Символ пива. Векторная винтажная графика Иллюстрация стекла с g. Set of Vector Cask Alcohol Emblems Stock Illustration Набор векторных бочонков с алкогольными эмблемами Template label pub Royalty Free Stock Illustrations Шаблон этикетки для паба Vintage Beer emblem Vector Graphics Винтажная пивная эмблема Wild west facade - cartoon Stock Vector Фасад Дикого Запада - мультфильм Hand drawn vector set of wine, grapes and winemaking Royalty Free Stock Vectors Ручной обращается векторный набор вина, винограда и виноделия Wine cellar Stock Illustration Винный погреб Grapes Royalty Free Stock Illustrations Виноград Wine label design with grapes Vector Graphics Дизайн винной этикетки с виноградом Vector set and logos cooperage workshops Stock Vector Векторный набор и логотипы бондарных мастерских Barrel on white background Royalty Free Stock Vectors Бочка на белом фоне Barrel Stock Illustration Бочка Cask of wine drawing vector illustration Royalty Free Stock Illustrations Бочка с вином, рисунок векторной иллюстрации Alcohol wooden barrel icon Vector Graphics Значок деревянной бочки с алкоголем Template of identity for beer restaurant Stock Vector Шаблон фирменного стиля для пивного ресторана The cognac engraving on wood Royalty Free Stock Vectors Гравировка коньяка на дереве Cut out template for Wine Box Stock Illustration Вырезанный шаблон для вина Коробка Wine barrel Royalty Free Stock Illustrations Бочка для вина Barrel beer Vector Graphics Бочка для пива Vintage wine and wine making set Stock Vector Набор для марочного вина и виноделия Old wooden barrel and grapes cluster. Royalty Free Stock Vectors Старая деревянная бочка и гроздь винограда.Template label beer Stock Illustration Шаблон этикетки для пива Wine, cheese and figs Royalty Free Stock Illustrations Вино, сыр и инжир Wine label Vector Graphics Этикетка для вина.

Китай Древесный спирт, Производители древесного спирта, Поставщики, Цена

Посмотреть:

Список

Смотреть галерею

31 490 товаров найдено из 1,499

.

Смотрите также

Сайт о Бане - проект, посвященный строительству, эксплуатации и уходу за русской баней. Большой сборник статей, который может быть полезен любому любителю бани

Содержание, карта сайта.