Теплообменник фото


Принцип работы и схема пластинчатого теплообменника

Теплообменник — это простое по своей конструкции оборудование, которое часто включается в схему различного рода промышленных устройств. В некоторых случаях пластинчатые теплообменники применяются в бытовых системах кондиционирования и охлаждения. Как ясно из названия, предназначены эти аппараты для отбора тепловой энергии от одной среды и передачи другой.Пластинчатый теплообменник используется для нагрева или охлаждения разных процессов

Особенности конструкции

Основное предназначение любого вида пластичного теплообменника состоит в преобразовании нагретой жидкости в охлажденную среду. Конструкция пластинчатого теплообменника имеет разборные части, а состоит устройство из следующих элементов:

Размеры рам разных изделий могут значительно различаться. Они будут зависеть от теплоотдачи и мощности нагревателя — с большим количеством пластин повышается продуктивность оборудования и, естественно, увеличивается вес и габариты.На теплообменнике можно управлять мощностью – увеличивать или уменьшать

Преимущества пластинчатых приборов:

В этом видео вы узнаете, как образуется горячая вода благодаря теплообменнику:

Устройство пластин

Конструкция и принцип работы пластинчатого теплообменника будет зависеть от модификации оборудования, в котором может находиться разное количество пластин с зафиксированными прокладками. Эти прокладки перекрывают каналы с проходящим тепловым носителем. Чтобы достигнуть необходимой герметичности прилегания пар соединенных между собой прокладок, достаточно крепления этих пластин с подвижной плитой.

Нагрузки, которые действуют на это устройство, распределяются, как правило, на пластины и уплотнители. Рама и элементы крепежа, по большому счету, представляют собой корпус оборудования.

Рельефная поверхность пластин во время сжатия гарантирует прочное крепление и позволяет всей системе теплообменника набрать необходимую прочность и жесткость.

Прокладки фиксируются на пластинах с помощью клипсового соединения. Необходимо сказать, что прокладки во время зажатия самостоятельно центрируются относительно своей оси. Утечка теплового носителя предотвращается благодаря окантовке обшлага, который дополнительно создает барьер.

Для устройства пластинчатого теплообменника изготавливаются несколько видов уплотнителей: с жестким и мягким рифлением.

Подробнее о теплообменном оборудовании:

В мягких пластинах каналы находятся под углом 30 градусов. Этот вид устройств характеризуется высокой теплопроводностью, но незначительной стойкостью к давлению теплового носителя.

В жестких элементах при изготовлении канавок делается угол в 60 градусов. Для этих устройств не характерна повышенная теплопроводность, их основное достоинство — возможность переносить значительное давление теплоносителя.

Для достижения наилучшего режима тепловой отдачи можно комбинировать пластины. Причем нужно учитывать, что для оптимальной работы устройства необходимо, чтобы оно функционировало в режиме турбулентности — тепловой носитель обязан передвигаться по каналам без каких-либо задержек. Между прочим, кожухотрубный теплообменник, где конструкция имеет схему «труба в трубе», обладает ламинарным течением теплоносителя.

В чем состоит преимущество? Во время одинаковых теплотехнических характеристик пластинчатое оборудование имеет значительно меньшие габариты.

Требования к прокладкам

К аппаратам с пластинами предъявлены довольно жесткие требования касательно герметичности оборудования, именно по этой причине на сегодняшний день прокладки начали изготавливать из полимеров. К примеру, этиленпропилен может с легкостью эксплуатироваться в условиях повышенных температур — и пара, и жидкости. Однако довольно быстро начинает разрушаться в среде, которая содержит большое количество жиров и кислот.

Теплообменники различаются количеством пластин

Крепление уплотнителей к пластинам производится чаще всего с помощью клипсовых замков, в редких случаях — с помощью клеящего состава.

Принцип работы

Если рассматривать, как работает пластинчатый теплообменник, то его принцип действия нельзя назвать очень простым. Пластины развернуты друг к другу под углом 180 градусов. Чаще всего в одном пакете находится по две пары пластин, которые создают 2 коллекторных контура: входа и выхода теплового носителя. Причем необходимо учитывать, что пара, которая находится с края, не задействуется во время теплообмена.

Сегодня изготавливается несколько различных типов теплообменников, которые, в зависимости от механизма работы и конструкции, делятся на:

Принцип работы одноконтурного аппарата следующий. Циркуляция теплоносителя в приборе по всему контуру производится перманентно в одном направлении. Помимо этого, производится и противоток тепловых носителей.

Многоконтурные устройства применяются лишь во время незначительного различия между температурой обратки и входящего теплоносителя. Движение воды при этом производится в различных направлениях.

Подробнее о пластинчатом теплообменнике:

Двухходовые устройства имеют два независимых контура. С условием постоянной регулировки тепловой подачи использование этих устройств является наиболее целесообразным.

Область использования

Сегодня есть несколько разновидностей теплообменников.

При этом каждый из приборов имеет уникальную конструкцию и особенность работы:

Устройства с разборной системой зачастую применяются в тепловых сетях, которые подведены к жилым домам и зданиям разного предназначения, в климатических системах и холодильных камерах, бассейнах, теплопунктах и контурах ГВС. Паяные приборы нашли свое предназначение в морозильных установках, вентиляционных сетях, устройствах кондиционирования, промышленном оборудовании разного предназначения, компрессорах.

Подробное устройство пластинчатого теплообменника

Полусварные и сварные теплообменники применяются в:

Наиболее популярным видом теплообменника, который применяется в быту, является паяный, обеспечивающий обогрев либо охлаждение теплоносителя.

Характеристики и расчет

Пластины и уплотнители в качестве главных деталей теплообменных устройств производятся из разных по своим показателям и характеристикам материалов. Во время выбора в пользу определенного изделия основную роль играет его предназначение и сфера применения.

Если рассматривать отопительные системы и ГВС, то в этой сфере чаще всего используются пластины, которые сделаны из нержавейки, и пластичные уплотнители из специальной резины NBR или EPDM. Наличие пластин из нержавеющей стали дает возможность работать с тепловым носителем, нагретым до 120 градусов, в другом же случае теплообменник может разогревать жидкость до 180°C.

Между пластинами  для герметизации расположены прокладки

При применении теплообменников в промышленной сфере и их подключении к технологическим процессам с действием масел, кислот, жиров, щелочей и других агрессивных сред используются пластины, которые сделаны из титана, бронзы и иных металлов. В этих случаях требуется установка асбестовых или фторкаучуковых прокладок.

Выбор теплообменника выполняется с учетом расчетов, которые производятся с помощью специального программного обеспечения.

Во время расчетов необходимо учитывать:

В качестве нагревающей среды, которая протекает через теплообменник, может применяться нагретая вода до температуры 90-120°C или пар с температурой до 170°C. Тип теплового носителя подбирается с учетом вида используемого котельного оборудования. Размеры и число пластин выбираются так, чтобы получился теплоноситель с температурой, которая соответствует действующим стандартам — не выше 65°C.

Теплообменник может быть изготовлен из разных видов металла

Необходимо сказать, что главными техническими характеристиками, которые при этом также считаются и основными преимуществами, являются компактные габариты оборудования и возможность обеспечить довольно значительный расход.

Диапазон площадей обмена и вероятных расходов у аппаратов довольно высокий. Самые маленькие из них, к примеру, от компании Alfa Laval, имеют размер поверхности до 1 м² и при этом обеспечивают прохождение количества теплоносителя до 0,3 м³/час. Наиболее же габаритные приборы имеют размер около 2500 м² и расход, который превышает 4000 м³/час.

Способы обвязки

Теплообменные приборы чаще всего устанавливаются в отдельных помещениях, обслуживающих частные постройки, многоэтажные здания, теплопункты центральных магистралей, промышленные предприятия.

Небольшой вес и габариты оборудования дают возможность производить установку довольно быстро, хотя определенные изделия, которые обладают большой мощностью, нуждаются в сооружении фундамента.

Монтаж и обслуживание теплообменника лучше доверить специалистам

Во время монтирования аппарата нужно соблюдать основное правило: заливка болтов в фундаменте, с помощью которых теплообменник прочно крепится, производится в любом случае. Схема обвязки должна обязательно предусматривать подводку теплоносителя к находящемуся наверху патрубку, а к установленному внизу штуцеру производится подсоединение обратного контура. Подача разогретой жидкости подключается наоборот.

В подающем контуре требуется наличие циркуляционного насоса. Помимо основного, непременно устанавливается и одинаковый с ним по мощности запасной насос.

Если в ГВС находится магистраль обратного передвижения воды, то механизм работы и схема несколько меняется. Горячая вода, которая подается по контуру, перемешивается с холодной из водопровода, и только после этого смесь подается в теплообменник. Регулировка температуры на выходе производится с помощью электронного блока, который управляет клапаном входящего теплового носителя.

Чем больше пластин в теплообменнике, тем выше мощность

В двухступенчатой системе можно использовать тепловую энергию обратной магистрали. Это дает возможность рациональней применять имеющееся тепло и снизить чрезмерную нагрузку на котельное оборудование.

В любой из вышеописанных схем обвязки на входе в теплообменник обязан находиться фильтр. С его помощью можно не допустить засорения системы и продлить срок ее эксплуатации.

При всех иных достоинствах пластинчатые теплообменники не опережают старые кожухотрубчатые модели только по одному важному показателю: во время обеспечения значительного расхода пластинчатые устройства недостаточно нагревают теплоноситель. Этот недостаток устраняется расчетом незначительного запаса при выборе количества пластин.

Характеристика пластинчатых теплообменников:

kaminguru.com

Принцип работы и устройство пластинчатого теплообменника - Школа по утеплению дома

ГлавнаяВодонагревателиПринцип работы и устройство пластинчатого теплообменника

02.11.2015

Любой теплообменник представляет собой аппарат, выполняющий теплообмен в одном конкретном месте либо же помещении, преобразуя холодную среду в горячую или наоборот. И пластинчатый теплообменник, принцип работы которого рассматривается в данной статье, может «питаться» не только паром, газами, но также и различными жидкостями. Какие функции он выполняет? Все верно – он прогревает или, напротив, охлаждает необходимую среду.

пластинчатый теплообменник принцип работы

О принципе действия

Пластинчатый теплообменник принцип действия имеет достаточно сложный. Пластины в конструкции располагаются под углом в 180 градусов относительно друг друга. Зачастую производители делают это попакетно, следовательно, компонуются сразу четыре изделия и создается пара коллекторных контуров – подача жидкости и «обратка». Хотя стоит знать, что крайние пластины не принимают никакого участия в процессе теплообмена.

Собственно, с принципом действия устройства все более-менее понятно. Сейчас же рассмотрим классификацию данной конструкции – в соответствии с ней теплообменники могут быть трех типов.

Что же касается технических характеристик таких теплообменников, то они следующие:

Средние цены пластинчатые теплообменники

Средняя стоимость варьируется между 20 000 и 80 000 рублей, более конкретная цифра зависит от количества пластин, а значит, от мощности устройства.

Модель Фото Тип среды Мощность Темпер-атура среды на входе С Темпера-тура среды на выходе С Количе-ство пластин Цена
Пластинчатый теплообменник НН №04 вода — вода 21500 ккал/ч греющая среда 95 нагреваемая среда 5 греющая среда 75 нагрева-емая среда 65 13 от 24000
Пластинчатый теплообменник НН №08 вода — вода 64500 ккал/ч греющая среда 95 нагреваемая среда 5 греющая среда 75 нагрева-емая среда 65 23 от 37000
Пластинчатый теплообменник НН №14 вода — вода 258000 ккал/ч греющая среда 95 нагреваемая среда 5 греющая среда 75 нагрева-емая среда 65 18 от 65000
Пластинчатый теплообменник НН №20 вода — вода 86000 ккал/ч греющая среда 95 нагреваемая среда 70 греющая среда 75 нагрева-емая среда 95 18 от 77000

Таблица средних цен и характеристик на различные модели теплообменников

Конструктивные особенности пластинчатых теплообменников

Прибор данного типа представляет собой сборную конструкцию, которая состоит из:

Сама рама может иметь самые разнообразные габариты – все в данном случае зависит от того, какова мощность теплообменника. Другими словами, чем большим будет количество этих пластин, тем выше будет производительность оборудования. Следовательно, общий вес и габариты также увеличатся.

Помимо того, упомянутого выше стягивания пластин более чем достаточно для установки требуемой плотности состыковки резиновых прокладок, находящихся на соседствующих пластинах. А если говорить о самом теплообменнике с точки зрения нагрузок, которые воздействуют на него, то те влияют преимущественно на прокладки с пластинами. В это же время крепежи с рамой являются всего лишь своего рода корпусом. По этой причинно целесообразно рассматривать не только их.

Видео – Пластинчатый теплообменник принцип работы (ТИЖ)

Роль пластин в конструкции

Прежде всего, стоит сказать о том, что такие пластины производятся исключительно из «нержавейки». Каждый знает, что данный материал невосприимчив к негативному влиянию теплоносителя низкого качества, равно как и к повышенной температуре в камере сжигания. Следовательно, изготовители сделали поистине правильный выбор. В технологическом плане производственная процедура представляет собой обычную штамповку. И в этом нет ничего удивительного, так как изготовить плиту, имеющую сложную конфигурацию, причем таким образом, чтобы использованный материал сохранил свои первоначальные свойства, возможно исключительно по данной технологии.

Сами плиты имеют весьма необычное устройство. Они изготавливаются с применением специальной технологии «Офф-сет». Она заключается в создании на плоскостях канавок, способных располагаться как симметрично, так и асимметрично. Благодаря подобного рода рельефной плоскости площадь теплоотбора увеличивается, более того, сам теплоноситель распределяется равномерно.

Для крепления резиновых прокладок к пластинам используются клипсовые соединения. Крепеж достаточно прост, но при этом предельно надежен. Да и сами прокладки при этом выполнены так, что самостоятельно центруются по направляющей – точнее говоря, на автомате. А это значит, что пользователю не нужно ничего придерживать, подталкивать и проч., поскольку и без его вмешательства все будет находиться на своих местах. И по причине особой окантовки манжеты образуется вспомогательный барьер, способствующий минимизации утечки носителя тепла.

На данный момент пластины такого рода производятся в двух модификациях, ознакомимся с ними.

К слову, если менять пластины в пластинчатом теплообменнике, принцип работы которого рассматривается в этой статье, то можно подобрать наиболее подходящий вариант отдачи тепла оборудованием в целом. Проще говоря, если теплоотдача будет высокой, то теплоноситель будет беспрепятственно двигаться по каналам.

Любопытный факт: в теплообменнике «кожухотрубного» типа (в нем труба находится в другой трубе) внутренний режим работы прибора является ламинарным.

О чем это говорит? Только об одном: при одних и тех же термотехнических параметрах габариты пластинчатого теплообменника примерно вчетверо меньшие. А значит, прибор во столько же раз более компактно.

Роль прокладок в конструкции

По причине строгих требований, касающихся герметичности приборов, прокладки начали производить из различных полимеров. Сегодня в большинстве случаев применяется материал под названием этиленпропилен, поскольку он прекрасно переносит повышенную температуру и воды, и даже пара.

Хотя у материала есть существенный недостаток – под действием масла или жира он разрушается моментально. К слову, диапазон выдерживаемой температуры для этиленпропилена составляет 30-160 градусов, что, по сути, очень даже неплохо. Но отметим, что это далеко не единственный материал, который может использоваться с подобной целью.

Зачастую прокладки фиксируются посредством специальных замков-клипсов, хотя может использоваться и клеевой состав.

Сферы применения пластинчатых теплообменников

Пластинчатый теплообменник, принцип работы которого был рассмотрен выше, имеет достаточно широкое применение. Их можно встретить практически везде, где они, собственно, вообще могут встречаться.

  1. В нефтяной отрасли – нефтяным продуктам, как мы знаем, очень часто требуется охлаждение.
  2. В централизованном отоплении, в ГВС, для подогрева воды в бассейнах и проч.
  3. В автомобилестроении.
  4. В металлургии, машиностроении – там пластинчатые теплообменники применяются для того, чтобы при необходимости охлаждать различные станки и другое оборудование.
  5. В пищевой отрасли – здесь охлаждать следует не только оборудование, но и, к примеру, молочные продукты. И описываемая система является для этого идеальным вариантом!
  6. В судостроении – немногие знают, но на кораблях порой нужно охлаждать системы или, напротив, нагревать морскую воду. Для этого отлично подходит теплообменник.

Разумеется, это далеко не полный перечень того, где можно использовать пластинчатые конструкции.

Видео – Как собрать разборной теплообменник

Особенности монтажа и установки

Теплообменник крепится в строгом соответствии с инструкцией производителя. Он прижимается к стене (для этого используется специальная лента либо консоль). Кроме того, устройство можно закрепить посредством уголка, зафиксированного в нижней части корпуса. В дополнение его еще свяжут трубы.

Другой важный момент – диаметр подключения (дело в том, что устройство достаточно компактно). Объем жидкости в нем незначительный, равно как и расстояние между пластинами. Поэтому нужно подбирать только такой диаметр, который подходит, или же несколько больший – к примеру, один дюйм. Да и мощность должна подбираться исключительно с запасом (можно на 50 или даже на 100 процентов), поскольку на габариты данный параметр никак не влияет. Но производительность при этом увеличивается!

Видео – Подключение пластинчатого теплообменника

На этом все, вот мы и разобрали это устройство, предназначенное для распределения тепла. Теплых вам зим!

v-teplo.ru

Пластинчатый теплообменник для отопления

Кожухотрубная конструкция теплообменника, где среды движутся навстречу друг другу по трубкам, помещенным одна в другую, постепенно уходит в прошлое. Эти громоздкие устройства больших габаритов хотя и функционировали довольно эффективно, но не могли похвастать большим расходом нагреваемой среды. Им на смену пришли новые агрегаты – скоростные пластинчатые теплообменники. Их устройству, принципу действия и применению как раз и посвящена данная статья.

Устройство и принцип работы пластинчатого теплообменника

Конструктивно агрегат в корне отличается от своего кожухотрубного предшественника. Площадь поверхности обмена тепловой энергией у последнего наращивалась за счет увеличения длины змеевика, отсюда и большие габариты аппарата. В новом теплообменнике это достигается путем увеличения количества пластин одинаковой площади.

Имея такую же мощность, он по размерам втрое меньше кожухотрубного, при этом способен обеспечить большой расход нагреваемой среды, например, воды для нужд ГВС. Отсюда и возникло второе название агрегата – скоростной. Ниже на схеме показано устройство пластинчатого теплообменника:

1, 11 – подающий и обратный патрубки для подключения греющей среды (теплоносителя); 2, 12 – входной и выходной патрубки нагреваемой среды; 3 — передняя неподвижная плита; 4, 14 – отверстия для протока теплоносителя; 5 – малая уплотнительная прокладка в виде кольца; 6 – рабочая теплообменная пластина; 7 – верхняя направляющая; 8 – задняя подвижная плита; 9 – задняя опора; 10 – шпилька; 13 – большая прокладка по контуру пластины; 15 – нижняя направляющая.

На схеме представлен пластинчатый теплообменник для отопления самой простой конструкции с патрубками, расположенными по разные стороны агрегата. Между двумя плитами, установленными на двух направляющих, зажато определенное число пластин с резиновым уплотнением между ними. На каждой пластине с целью увеличения поверхности обмена выполнено рельефное гофрирование, как изображено на фото:

Присоединительные патрубки также могут находиться и с одной стороны аппарата, на передней плите, что не оказывает влияния на принцип работы пластинчатого теплообменника. Он заключается в том, что пространство между каждыми последующими пластинами поочередно заполняется то теплоносителем, то нагреваемой средой. Очередность заполнения обеспечивается формой прокладок, в одной секции они открывают путь потоку теплоносителя, в другой – поглотителя тепла.

Во время работы в каждой секции, кроме первой и последней, происходит интенсивный обмен теплом через пластины сразу с двух сторон. Обе среды протекают через свои секции навстречу друг другу, нагревающая подается сверху и выходит через нижний патрубок, а нагреваемая – наоборот. Как это работает, отображает функциональная схема пластинчатого теплообменника:

Технические характеристики

Пластины и прокладки могут изготавливаться из различных материалов, их выбор зависит от назначения агрегата, ведь сфера применения подобных теплообменников весьма широка. Мы же рассматриваем системы отопления и ГВС, где они выступают в качестве теплосилового оборудования. Для этой сферы пластины делаются из нержавеющей стали, а прокладки – из резины NBR или EPDM. В первом случае теплообменник из нержавеющей стали может работать с водой, нагретой до максимальной температуры 110 ºС, во втором – до 170 ºС.

Для справки. Данные теплообменники используются и для разных технологических процессов, когда сквозь них протекают кислоты, щелочи, масла и другие среды. Тогда пластины производятся из титана, никеля и различных сплавов, а прокладки – из фторкаучука, асбеста и других материалов.

Расчет и подбор теплообменника осуществляется с помощью специализированного программного обеспечения по таким параметрам:

Примечание. В качестве греющей среды, протекающей сквозь пластинчатый теплообменник для ГВС, может выступать вода температурой 95 или 115 ºС, либо пар, нагретый до 180 ºС. Это зависит от типа котельного оборудования. Количество и размер пластин подбирается таким образом, чтобы на выходе получить воду с максимальной температурой не более 70 ºС.

Надо сказать, что преимущества пластинчатых теплообменников заключаются не только в скромных размерах и способности обеспечить большой расход. Дело в том, что диапазон подбираемых площадей обмена и расходов у рассматриваемых агрегатов чрезвычайно широк. Самые малые из них имеют площадь поверхности менее 1 м2 и рассчитаны на протекание 0.2 м3 жидкости за 1 час, а наибольшие – 2000 м2 при расходе свыше 3600 м3/ч. Ниже в таблице представлены технические характеристики, которые показывает эксплуатация пластинчатых теплообменников известного бренда ALFA LAVAL:

По исполнению теплообменные агрегаты бывают следующих видов:

Примечание. Именно паяные теплообменники многие мастера-умельцы используют для частного дома, приспосабливая их под нагрев или охлаждение воды.

Обвязка теплообменника

Как правило, установка подобного теплосилового оборудования предусматривается в индивидуальных котельных многоквартирных жилых домов или промышленных предприятий, а также в тепловых пунктах централизованных систем теплоснабжения. Цель – получить воду для нужд ГВС температурой до 70 ºС либо теплоноситель до 95 ºС при использовании паровых и высокотемпературных водогрейных котлов.

Ввиду небольших габаритов и веса монтаж теплообменника производится достаточно просто, хотя мощные агрегаты и требуют устройства фундамента. В любом случае выполняется заливка фундаментных болтов, с помощью которых аппарат надежно фиксируется на своем месте. Теплоноситель всегда подводится к верхнему патрубку, а обратный трубопровод присоединяется к штуцеру, расположенному под ним. Подача нагреваемой воды подключается, наоборот, к нижнему патрубку, а ее выход – к верхнему. Простейшая схема обвязки пластинчатого теплообменника показана ниже:

В контуре подачи теплоносителя обязательно присутствует свой циркуляционный насос, установленный на подающем трубопроводе. В соответствии с правилами помимо рабочего насоса параллельно ставится резервный такой же мощности. Если же в системе ГВС имеется магистраль обратной циркуляции, то схема подключения приобретает такой вид:

Здесь используется тепло воды, идущей по замкнутому контуру ГВС, к ней подмешивается холодная из водопровода и только потом смесь поступает в теплообменник. Регулирование температуры на выходе осуществляет электронный блок, управляющий клапаном на линии подачи теплоносителя. Ну и последняя схема – двухступенчатая, позволяющая использовать тепловую энергию обратной линии системы отопления:

Схема позволяет существенно экономить, снимая лишнюю нагрузку с котлов и используя имеющееся тепло по максимуму. Следует обратить внимание, что во всех схемах на входе в скоростной теплообменник устанавливаются фильтры. От этого зависит надежная и долговечная работа агрегата.

Заключение

Как показывает практика, современный пластинчатый теплообменник все же немного уступает старому кожухотрубному по одному критерию. Выдавая большой расход, скоростные агрегаты немного недогревают выходящую жидкость, этот недостаток обнаружен специалистами во время эксплуатации. Поэтому при подборе количества и площади пластин принято делать небольшой запас.

cotlix.com

Пластинчатый теплообменник: виды, устройство и принцип работы

Пластинчатый теплообменник – один из видов рекуперативных теплообменных аппаратов, в основе работы которого лежит теплообмен между двумя средами через контактную пластину без смешения.

Типы, устройство и принцип работы пластинчатых теплообменников

Принцип работы всех пластинчатых теплообменных аппаратов одинаков:

  1. На входы ТО подаются теплоносители.
  2. Теплоносители движутся по внутреннему контуру теплообменного агрегата, который сформирован пакетом пластин.
  3. В процессе движения, контактируя с поверхностью пластины, более горячий теплоноситель отдает часть тепла нагреваемой среде.
  4. С выходов теплоносители, с изменившейся температурой, поступают в систему отопления, водоснабжения или вентиляции.
  5. Входные и выходные отверстия теплообменных аппаратов могут иметь различное сечение (у агрегатов Ридан диаметр достигает 500 мм), и с помощью патрубков подключаются к трубопроводу основной системы.

Данный принцип действия и устройство пластинчатого ТО хорошо продемонстрированы в следующем видео:

Принцип работы пластинчатого теплообменника

Виды пластинчатых теплообменников в зависимости от конструкции:

Пластинчатые разборные теплообменные аппараты

Пластинчатый разборный теплообменник – устройство, в котором основную функцию теплопередачи между теплоносителями выполняет пакет пластин. Среды не смешиваются между собой благодаря чередованию пластин с плотными резиновыми прокладками, которые образуют два контура движения.

Свое название «разборные» подобный тип агрегатов получил за то, что пакет пластин не только собирается, но и разбирается во время регулярного обслуживания (промывки) или ремонта.

Конструкционная схема разборного теплообменника

Разборный теплообменник состоит из следующих элементов:

Благодаря высокой скорости рабочих сред внутри разборных теплообменных аппаратов отложения и засоры скапливаются на его внутренних поверхностях медленнее, чем на поверхностях кожухотрубных агрегатов.

Несомненное достоинство данного вида ТО – возможность полной разборки аппарата, что позволяет производить не только промывку пластин, но и их механическую очистку.

Также стоит отметить, что возможность полной разборки агрегата позволяет не заменять его целиком в случаях протечек, а быстро выявить нерабочие элементы, поменять их и вновь запустить теплообменник в эксплуатацию. При наличии необходимых запасных частей «под рукой» вся процедура займет от нескольких часов до 1 часа.

Паяные теплообменные аппараты

Паяные теплообменники также в своей основе содержат пакет пластин, но отличие от разборных заключается в том, что они спаяны между собой, поэтому сборка/разборка такого пакета – невозможна.

Пайка производится с помощью никеля или меди, поэтому обозначают два основных вида паяных пластинчатых теплообменников: никельпаяный и меднопаяный. Никелевый припой используется для аппаратов, которые будут работать с более агрессивными средами.

Паяный пластинчатый теплообменник в разрезе

Паяные теплообменные аппараты применяются в основном в бытовом сегменте благодаря своей низкой стоимости, простоте и небольшим габаритам. Чаще всего подобный тип устройств можно встретить в системах отопления частных домов, где теплообменник подключается к водонагревательному котлу.

Полусварные теплообменники

Полусварные теплообменные аппараты – агрегаты, в которых пакет пластин сделан комбинированным способом:

Места попарной сварки пластин 

Подобный тип конструкции позволяет использовать полусварные теплообменные аппараты в работе с агрессивными средами или в охлаждении, поскольку сварка пластин исключает возможность утечки фреона в охлаждающем контуре.

Сварные теплообменники

Сварные теплообменные аппараты – устройства, в которых пластины сварены между собой без использования уплотнителей.

Внешний вид сварного теплообменника

Один из потоков теплоносителей движется по гофрированным каналам, второй по трубчатым. Принцип работы пластинчатого сварного теплообменника показан в этом видео:

Принцип работы сварного теплообменника

Сварные теплообменные аппараты применяются в технических процессах с предельными параметрами: высокими температурами (до 900 градусов Цельсия), давлением (до 100 бар) и крайне агрессивными средами, поскольку отсутствие резиновых уплотнителей и сварной метод сцепления исключают возможность протечки и смешения сред.

Основные недостатки подобного типа агрегатов: высокая стоимость и габариты.

Применение пластинчатых теплообменников

Пластинчатые теплообменные аппараты используются в:

Технические характеристики пластинчатых теплообменников

Пластинчатый теплообменник имеет различные технические характеристики в зависимости от типа конструкции:

 

Разборные

Паяные

Полусварные

Сварные

КПД, %

95

90

85

85

Максимальная рабочая температура, °C

200

220

350

900

Максимальное рабочее давление, бар

25

25

55

100

Максимальная мощность, МВт

75

5

75

100

Срок службы, лет

20

20

10-15

10-15

Плюсы и минусы пластинчатых теплообменников

Преимущества:

Недостатки:

Заключение

Пластинчатый теплообменник – это современный тип теплообменных аппаратов, которые активно вытесняют аналоги устаревших типов, такие как кожухотрубные агрегаты. Этому способствует их компактность, низкая цена и высокие показатели технических характеристик.

В следующей статье мы рассмотрим, как происходит сборка и разборка пластинчатого теплообменника.

Подписывайтесь на наши новости!

proteplo.org

Теплообменники: виды, устройство и принцип работы

Теплообменник – оборудование, в рабочем блоке которого налажен теплообмен между элементами с различными температурами.

Как выглядят теплообменники

Достоинства систем отопления на основе теплообменников:

Технология получения теплообменивающих устройств предусматривает их изготовление из материалов: латунь, медь, силумин (кремниево-алюминиевый сплав), нержавеющая сталь. Выбор материала зависит от конечной цели использования оборудования. Медные устройства применимы при изготовлении пива, а латунь чаще выбирают для комплектации оборудования, использующего повышенное давление.

Сферы применения

Теплообменники для горячего водоснабжения

Выделяют следующие сферы использования теплообменивающего оборудования:

Помимо этого, возможно применение теплообменивающего оборудования для отопления частных домовладений. Установить устройство можно как самостоятельно, так и с помощью мастера. Использование такой техники помогает равномерно распределить тепло в помещении.

Классификация

Классификация теплообменников предусматривает их деление на такие виды:

Терморегулятор для радиатора отопления: виды и принцип работы

Пластинчатые устройства включают набор пластин с волнистыми каналами со штамповкой и поверхностями, предназначенными для циркуляции жидкостей. Пластины соединены при помощи прорезиненных прокладок и стяжек. Преимущества подобных устройств – легкость в применении и компактность.

Пластинчатые теплообменники находят все более широкое применение. Сфера их использования не ограничивается только промышленным оборудованием, возможен также монтаж этих устройств в жилых домах для монтажа отопительных систем.

Пластинчатые теплообменники классифицируются на группы:

Разборные устройства наиболее популярны. В них пластины разделены при помощи резиновых уплотнителей. Установка не занимает много времени, а эксплуатация не вызывает трудностей.

Классический вариант пластинчатых теплообменников имеет входные и выходные патрубки на поверхности передней плиты. Некоторые устройства имеют патрубки и на передней, и на задней панелях. Рабочие среды подсоединяются к патрубкам посредством фланцевых, резьбовых, стальных соединений. Некоторые модели имеют меньшее количество патрубков, тогда теплоносители подсоединяются непосредственно к плите.

Трубчатые теплообменники включают трубы малого диаметра, вваренные в другие трубы. Достоинствами устройства считается применение в условиях повышения давления.

По критерию способа теплообмена техника подразделяется на смесительную и поверхностную. Устройства смесительного типа передают тепло при плотномконтактировании носителей. Поверхностные теплообменники содержат два контура, в которых происходит перемещение сред с отличными температурами. Обмен теплом между ними возможен через поверхностные элементы пластин, стенок, листов или труб, которые выполнены из теплопроводящих материалов (нержавеющей или высокоуглеродистой стали, сплавов цветных металлов). Этот тип оборудования применяется в жилищно-коммунальном хозяйстве, промышленных предприятиях и в организации малого бизнеса.

Поверхностные теплообменники делятся виды: рекуперативные и регенеративные. Рекуперативные теплообменники характеризуются константным обменом тепла посредством стенок контуров при однонаправленном движении носителей. В регенеративных устройствах происходит поочередный контакт носителей с теплообменивающей поверхностью.

Рекуперативные теплообменники тоже классифицируются:

  1. Погружные. Принцип работы предусматривает движение одного теплоносителя по змеевику, который погружен в бак, содержащий второй жидкий теплоноситель. Модель отличается удобством в применении, характеризуется оптимальной стоимостью.
  2. Оросительные. Сфера применения – как конденсаторы в системах охлаждения. Теплобменники выглядят как змеевики из горизонтальных труб, которые размещены в вертикальной плоскости. У каждого ряда труб есть желоб, по которому на них стекает вода пониженной температуры. Вода, которая не испарилась, возвращается в систему благодаря насосу.
  3. Витые. Представляют собой систему труб, намотанных на сердечник. Компактны и высокоэффективны.
  4. Спиральные. Для оборудования характерен вид двух спиральных каналов, которыми обвита центральная перегородка. Предназначены для охлаждения и нагрева вязких жидкостей.
  5. Кожухотрубные. Трубные решетки присоединены к кожуху посредством сварки. В них закрепляются трубы. Крепление их происходит плотно при помощи развальцовки. Решетки закрыты крышками на шпильках, болтах и прокладках. Кожух включает штуцера (патрубки). Принцип работы заключен в циркуляции носителя тепла в межтрубном пространстве и по трубам. Увеличение теплоотдачи происходит при помощи оребрения.
  6. Секционные – последовательность секций, которые представляют собой кожухотрубные устройства.
  7. Пластинчатые. Включают набор пластин с волнистыми поверхностями со штамповкой и каналами для движения жидкостей. Возможна работа только при пониженном давлении.

Кожухотрубный теплообменник

Строение и принцип работы

Механизм действия легко рассмотреть на примере пластинчатого теплообменника заводской сборки. Структура предусматривает два контура и четыре выхода. Пластинчатое устройство разделяет потоки по давлению и температуре. Теплоносителями выступают кислоты и другие жидкости.

Термостатический клапан: виды и способы установки

Теплообменники для отопления предполагают подключение к одному контуру теплых полов, а к другому – теплоцентрали.

Прямое подключение центрального теплоносителя невозможно, поскольку это приводит к выходу из строя теплого напольного покрытия.

Это происходит из-за повышения давления в теплоцентрали, температурных перепадов и присутствия химически агрессивных веществ в теплоносителе.

Строение теплообменника представлено на рисунке ниже.

Схематичное устройство пластинчатого теплообменника

Структуру теплообменника составляют:

Синие и красные стрелки на рисунке обозначают направления движения холодного и горячего теплоносителя внутри теплообменника соответственно.

В быту применяют теплообменник, чей принцип функционирования основан на разделении потоков и поддержании автономного функционирования теплых полов при пониженном уровне рабочего давления в 1,5 бара и подключении чистой воды.

Структуру теплообменного оборудования составляют три группы пластин:

  1. Набранные, принадлежащие автономной системе отопления с пониженным уровнем давления.
  2. Набранные, принадлежащие центральной системе отопления с повышенным уровнем температуры и давления.
  3. Разделительные, характеризующиеся малой толщиной и передающие тепло от централизованной системы к автономной.

Число и параметры пластин предопределяют мощность теплообменного оборудования. Каждое устройство предполагает установку очистительного фильтра. Он способен удержать грубые частицы: окалины, стружку и прочие. Фильтр нуждается в периодическом промывании очистительными растворами.

Принцип работы теплообменника

Принцип работы теплообменника заключается в передаче тепловой энергии от одного теплоносителя к другому. В устройство поступает прямая греющая среда и холодная среда. При прохождении их между пластинами по каналам происходит нагревание холодной среды. На выходе из теплообменника получают нагретую среду и обратную греющую среду. Внутри оборудования теплообменивающие жидкости движутся навстречу друг другу, то есть в противотоке, и не могут смешиваться, поскольку разделены пластинами.

Характеристики оборудования

Теплообменное оборудование маркируется следующими данными:

Помимо этого, в комплектацию входят схема и техпаспорт на языке страны-производителя, в нужных случаях переведенный на язык продающей страны.

Возможно диагональное и вертикальное расположение контуров. При диагональном расположении контуров требуется производить установку только в вертикальное положение. Тогда возможно поступление горячей воды в теплообменивающий аппарат в направлении сверху вниз. При этом происходит передача тепла в автономную систему посредством разделительных пластин.

Вода на входе – повышенной температуры, а на выходе она снижена. При этом в контуре, принадлежащем автономной системе, движение теплоносителя происходит снизу вверх. На нижних уровнях происходит слабый нагрев воды, при приближении к верхним – нагрев усиливается. Это облегчает функционирование системы. Подача воды в оборудование возможна благодаря принудительной циркуляции.

Монтаж пластинчатого теплообменника, как наиболее распространенного, осуществляется по трем вариантам:

При параллельном монтаже требуется установить терморегулятор. Этот способ экономит пространство, время, а также не требует больших затрат. Двухступенчатая смешанная схема обеспечивает значительную экономию теплоносителя. Это достигается благодаря использованию обратного тока теплой воды для обогрева потока с более низкой температурой.

Использование последовательной схемы применяет разделение входящего потока на две ветки. Одна из них проходит сквозь регулятор, другая – сквозь подогреватель. Далее оба потока смешиваются, после чего попадают в отопительный блок. Это экономит теплоноситель. Полная автоматизация оборудования невозможна.

Теплообменники закрепляются на стене с помощью крепежной ленты, консоли и уголка, прикрепленного к нижней части устройства. После этого требуется провести установку фильтров. Минимальное условие – присутствие фильтрующей системы в системе теплоцентрали. Перед установкой стоит подготовить краны и американки – резьбовые разъемные соединительные компоненты. Каждый из них включает в состав накидную гайку, прокладку и два фитинга. Важно правильно подбирать запчасти, чтобы они подходили к диаметру системы подключения. Тогда монтаж не вызовет затруднений.

Внешний вид пластинчатого теплообменника

Буржуйка с теплообменником. Видео

Про особенности изготовления буржуйки из газовых баллонов с теплообменником можно узнать из видео ниже.

Несмотря на широту сфер применения теплообменников, наиболее популярным является их использование в качестве дополнительной системы отопления. Оптимальные технические характеристики обеспечивают качественный прогрев помещений любой площади. Установка полов с теплообменниками не занимает много времени, они просты в эксплуатации и долговечны. Необходимо своевременно проводить профилактические осмотры системы, чтобы своевременно устранять возможные проблемы.

Facebook

Twitter

Вконтакте

Одноклассники

aqueo.ru

Пластинчатый теплообменник | Конструкция | Принцип работы

Пластинчатый теплообменник— это аппарат, предназначенный для передачи тепла от одной среды к другой. Среды, участвующие в теплообмене, могут быть как жидкими (вода, молоко, масло, раствор, кислота и др.), так и газообразными (пар, фреон, воздух и др.).

Пластинчатый теплообменник по способу передачи тепла является скоростным рекуперативным теплообменником. В нем рабочие среды разделены теплопроводной стенкой (пластиной).

По конструктивному исполнению пластинчатые теплообменники делятся на: разборные, паяные, сварные и полуразборные.

Области применения пластинчатого теплообменника

Пластинчатые теплообменники применяются в различных отраслях промышленности и жилищно-коммунального хозяйства. Их используют в качестве нагревателей, охладителей, конденсаторов, испарителей различных сред.

Машиностроение
  • Охлаждение СОЖ
  • Охлаждение эмульсий
  • Охлаждение гидравлического масла
  • Охлаждение жидкости для шлифования

Пищевая промышленность

  • Охлаждение сусла
  • Охлаждение молока
  • Нагревание сиропов
  • Нагревание и охлаждение пищевых масел
  • Пастеризация пищевых жидкостей (пива, молока)
  • Охлаждение вина

Компрессорные и турбинные установки

  • Охлаждение двигателей
  • Охлаждение газовых турбин
  • Охлаждение паровых турбин
  • Рекуперация тепла от дизельных установок
  • Охлаждение компрессора

Сахарная промышленность

  • Нагреватель диффузионного сока
  • Нагреватель дефекованного сока
  • Нагреватель фильтрационного сока
  • Нагреватель белой и зеленой патоки

Целлюлозная промышленность

  • Охлаждение сточных вод
  • Охлаждение промывочной воды
  • Испарение сточных вод

Холодильная промышленность

Отопление, вентиляция и кондиционирование воздуха
  • Центральное отопление
  • Нагревание циркуляционной воды
  • Установки тепловой рекуперации
  • Центральное холодоснабжение
  • Системы центрального кондиционирования

Химическая промышленность

  • Охлаждение щелочных и солевых растворов
  • Охлаждение кислот
  • Охлаждение серной кислоты
  • Охлаждение циркуляционной воды

Металлургия

  • Охлаждение мульд
  • Охлаждение печной воды
  • Охлаждение смесей
  • Охлаждение питательной воды
  • Охлаждение эмульсий

Обработка поверхностей

  • Охлаждение электролита
  • Охлаждение краски
  • Нагревание ванны для обезжиривания
  • Охлаждение гальванической ванны

Текстильная промышленность

  • Нагревание моющих средств
  • Нагревание красящих жидкостей
  • Охлаждение водных растворов
  • Возврат тепла от моющих средств

Автомобильная промышленность

  • Охлаждение закалочного масла
  • Охлаждение краски и растворов
  • Охлаждение прессов

и другие.

Конструкция пластинчатого теплообменника

1 – передняя неподвижная плита, 2 – задняя подвижная плита, 3 – верхняя направляющая, 4 – ролики для перемещения пластин вдоль направляющих, 5 – патрубки, 6 –рабочая пластина с уплотнением , 7 – шпильки, 8 –нижняя направляющая, 9 — задняя стойка, 10 — шильдик с названием и техническими данными

На данном чертеже изображен разборный пластинчатый теплообменник.

Пластинчатый теплообменник состоит из подвижной и неподвижной плиты, расположенного между ними пакета теплопередающих пластин, верхней и нижней направляющих и задней стойки. Основным элементом теплообменника являются пластины, которые стягиваются в пакет при помощи стяжных шпилек. На лицевой стороне каждой пластины в специальном углублении располагается резиновое уплотнение, обеспечивающее герметичное прилегание пластин друг к другу.

Пакет пластин образует каналы теплообменника, по которым, чередуясь, движутся среды. Все пластины в пакете одинаковы, только развернуты одна относительно другой на 180 градусов. Резиновые уплотнения исключают перетоки между средами, участвующими в процессе теплообмена.

На плитах теплообменника расположены патрубки, через которые входят и выходят среды. В одноходовом теплообменнике все патрубки располагаются на неподвижной плите. В многоходовом теплообменнике патрубки находятся с разных сторон, что дает лучшую температурную срезку, но не удобно с при эксплуатации теплообменника.

Паяный теплообменник обладает несколько иной конструкцией. В нем все пластины спаяны друг с другом при помощи медного припоя. Он обладает неразборной конструкцией и применяется для чистых сред.

www.teplo-polis.com.ua

Пластинчатый теплообменник: устройство и особенности

Тепло в наши дома поступает из котельной либо от центрального теплопункта, в котором холодная вода нагревается от теплообменника, выполняющего важную роль в системах отопления и горячего водоснабжения. В индивидуальных домах теплообменник пластинчатый и вовсе считается центральным элементом системы, потому как нагревание теплоносителя выполняется именно в нем. Такие приборы могут различаться конструкцией и видом, но принцип действия — во многом общий для всех типов.

Пластинчатые теплообменники

Конструкция пластинчатого теплообменника

Назначение теплообменников всех видов — преобразовывать непрогретую жидкостную среду в нагретую (и наоборот).

Пластинчатые теплообменники обладают разборной конструкцией, состоящей из таких частей:

Конструкция пластинчатого теплообменника

Размеры рам различных моделей могут существенно отличаться. Они зависят от мощности и тепловой отдачи подогревателя — с большим числом пластин увеличивается продуктивность прибора и, соответственно, возрастают его габариты и масса.

Пластины теплообменника

Конструкция пластинчатого теплообменника зависит от модификации устройства и может содержать различное количество пластин с закрепленными на них прокладками, герметизирующими каналы с протекающим по ним теплоносителем. Для достижения требуемой по условию герметичности плотности прилегания пар соседних прокладок одной к другой достаточно скрепления этих двух пластин с неподвижной плитой.

Нагрузки, действующие на аппарат, прилагаются главным образом на прокладки и пластины. Крепежные детали и рама, по сути, представляют собой корпуса прибора.

Рельефная окантовка пластин при сжатии гарантирует надежное крепление и дает конструкции теплообменника требуемую жесткость и прочность.

Конструкция пластин теплообменника

Прокладки закрепляются на пластинах посредством клипсового замка. Следует отметить, что прокладки при их зажатии самоцентрируются по направляющей. Утечка теплоносителя предотвращается окантовкой обшлага, создающей дополнительный барьер.

Для теплообменников производятся два типа пластин:

В деталях с мягким рифлением каналы устроены под углом 30°. Такой вид пластин отличается повышенной теплопроводимостью, но меньшей устойчивостью к давлению теплоносителя.

В частях с термически жестким рифлением при устройстве канавок соблюден угол в 60°. Этим пластинам не свойственна высокая теплопроводность, их преимущество — способность переносить высокое давление в системе.

Достижение оптимального режима теплоотдачи возможно при комбинировании пластин в теплообменнике. При этом необходимо учесть, что для эффективной работы прибора нужно, чтобы он функционировал в режиме турбулентности — теплоноситель должен перемещаться по каналам без каких-либо помех. К слову, кожухотрубный теплообменник, в котором реализована конструктивная схема «труба в трубе» — с ламинарным режимом течения жидкости.

Какая от этого выгода? При идентичных теплотехнических параметрах пластинчатый прибор обладает меньшими в несколько раз размерами.

Прокладки

К устройствам с пластинами предъявляются очень жесткие требования относительно герметичности, в связи с чем в последнее время прокладки стали выпускать из полимеров. Этиленпропилен, например, способен без проблем работать в условиях высоких температур — и воды, и пара. Но очень быстро разрушается в среде с содержанием масел и жиров.

Прикрепление прокладок к пластинам выполняется преимущественно клипсовым соединением, реже — посредством клея.

Принцип действия

Принцип работы теплообменника нельзя назвать слишком простым. Пластины развернуты одна к другой под 180°. Как правило, в одном пакете устанавливается по две пары пластин, создающих два коллекторных контура: ввода и отведения теплоносителя. При этом следует учесть, что пара расположенных с края элементов в тепловом процессе не задействуются.

На сегодняшний день производится несколько вариантов исполнения теплообменных приборов, устройство и принцип работы которых различны:

Принцип работы прибора

Как работает одноходовой аппарат? Циркуляция жидкости в нем осуществляется перманентно по всей площади в едином направлении. Кроме того, выполняется и противоток теплоносителей.

Аппараты многоходовые используются только при не слишком большой разнице между температурой подающейся жидкости и температурой обратки. Ток жидкостей при этом будет осуществляться в различных направлениях.

Двухконтурные теплообменники состоят из двух независимых контуров. При условии постоянной корректировки подачи тепла применение такого оборудования наиболее целесообразно.

Сфера применения

Существует несколько видов теплообменников, каждый из которых имеет свой принцип работы и специфику конструкции:

Прибор разборной конструкции часто используется в теплосетях, подведенных к жилым домам и сооружениям различного назначения, в бассейнах, климатических установках и холодильниках, системах ГВС, теплопунктах.

Вид сварного пластинчатого агрегата

Теплообменники паяного вида нашли свое применение в:

Приборы сварные и полусварные используются в:

Самым распространенным типом теплообменников, применяющихся в индивидуальных домовладениях, считается паяный, обеспечивающий нагрев или охлаждение воды.

Технические характеристики

Прокладки и пластины, как основные элементы теплообменных устройств, изготавливаются из различных по своим свойствам и характеристикам материалов. При выборе в пользу той или иной модели решающую роль играет назначение теплообменника и область его использования.

Если остановиться сугубо на системах ГВС и теплоснабжения, то в этой области больше распространены пластины, изготовленные из нержавеющей стали, а пластичные прокладки — из особой резины EPDM либо NBR. Установка пластин из нержавейки позволяет работать с теплоносителем, прогретым до 110°С, в другом же случае устройство пластинчатого теплообменника позволяет нагревать жидкость до 170°С.

Фрагмент пластины теплообменника

При использовании теплообменников в промышленном производстве и задействовании их в технологических процессах с воздействием щелочей, кислот, масел и иных агрессивных веществ, применяются пластины из никеля, титана и других сплавов. В таких случаях устанавливаются фторкаучуковые или асбестовые прокладки.

Подбор теплообменника производится согласно расчетам, выполняемым при помощи специализированных программ. При расчетах учитываются:

В роли нагревающей среды, протекающей через пластинчатый испаритель, может использоваться подогретая до температуры 95 или 115°С вода, а также пар температурой до 180°С. Вид теплоносителя подбирается в зависимости от вида применяемого котла и оборудования. Размеры и количество пластин подбираются с таким расчетом, чтобы в результате получить воду с температурой, соответствующей установленным стандартам — не более 70°С.

Стоит отметить, что основной технической характеристикой, являющейся также и главным преимуществом, считаются небольшие размеры устройства и способность обеспечить достаточно большой расход.

Вариативность возможных расходов и площадей обмена у пластинчатых приборов достаточно высока. Самые компактные из них, например, от бренда Alfa Laval, обладают площадью поверхности до 1 м2, обеспечивая протекание объема жидкости до 0,2 м3/час. Самые же крупные теплообменники имеют площадь порядка 2000 м2 и расход, превышающий 3600 м3/час.

Обвязка теплообменника

Теплообменные установки преимущественно монтируются в отдельных котельных, обслуживающих многоквартирные дома, индивидуальные постройки, предприятиях промышленности, теплопунктах центральных теплосетей.

Относительно небольшие размеры и масса устройств позволяют выполнить монтаж достаточно быстро, хотя некоторые обладающие большой мощностью модели требуют постановки на фундамент.

При установке прибора необходимо соблюсти основной принцип: заливание фундаментных болтов, посредством которых теплообменник надежно фиксируется, осуществляется во всех случаях. Схема обвязки непременно предусматривает подведение теплоносителя к расположенному сверху патрубку, а к размещенному снизу штуцеру выполняется подключение обратной магистрали. Подача нагретой воды подсоединяется наоборот — к нижнему патрубку, а выход ее — к верхнему.

Пример внедрения теплообменников

В подающем теплоноситель контуре необходима установка циркуляционного насоса. Кроме основного обязательно ставится и равный ему по мощности резервный насос.

Если в ГВС предусмотрена магистраль обратного движения жидкости, то схема и принцип работы пластинчатого теплообменника несколько изменяется. Нагревшаяся вода, подающаяся по замкнутому контуру, смешивается с холодной из водопровода, и лишь затем получившаяся смесь приходит в теплообменник. Корректировка температуры на выходе осуществляется посредством электронного блока, управляющего клапаном подающей теплоноситель магистрали.

При двухступенчатой схеме используется тепловая энергия обратной магистрали, что позволяет наиболее рационально использовать имеющееся тепло и снять с котла лишнюю нагрузку.

В каждой из рассмотренных систем на входе в теплообменник обязательно должны быть установлены фильтры, благодаря которым удается избежать загрязнения системы и продлить срок ее службы.

Итоги по теме

При всех прочих преимуществах современные пластинчатые теплообменники не смогли опередить устаревшие кожухотрубчатые по единственному, но очень важному критерию. При обеспечении значительного расхода, пластинчатые приборы немного не догревают воду. Такой недостаток легко устраняется созданием небольшого запаса при подборе количества пластин и расчете их площади.

Видео по теме:

profiteplo.com


Смотрите также

Сайт о Бане - проект, посвященный строительству, эксплуатации и уходу за русской баней. Большой сборник статей, который может быть полезен любому любителю бани

Содержание, карта сайта.