Вид угла


Виды углов

Каждый угол, в зависимости от его величины, имеет своё название:

Вид угла Размер в градусах Пример
Острый Меньше 90°
Прямой Равен 90°.

На чертеже прямой угол, обычно обозначают символом , проведённым от одной стороны угла до другой.

Тупой Больше 90°, но меньше 180°
Развёрнутый Равен 180°

Развёрнутый угол равен сумме двух прямых углов, а прямой угол составляет половину развёрнутого угла.

Выпуклый Больше 180°, но меньше 360°
Полный Равен 360°

Два угла называются смежными, если у них одна сторона общая, а две другие стороны составляют прямую линию:

Углы MOP и PON смежные, так как луч OP – общая сторона, а две другие стороны – OM и ON составляют прямую.

Общая сторона смежных углов называется наклонной к прямой, на которой лежат две другие стороны, только в том случае, когда смежные углы не равны между собой. Если смежные углы равны, то их общая сторона будет перпендикуляром.

Сумма смежных углов равна 180°.

Два угла называются вертикальными, если стороны одного угла дополняют до прямых линий стороны другого угла:

Углы 1 и 3, а также углы 2 и 4 – вертикальные.

Вертикальные углы равны.

Докажем, что вертикальные углы равны:

Сумма ∠1 и ∠2 составляет развёрнутый угол. И сумма ∠3 и ∠2 составляет развёрнутый угол. Значит, эти две суммы равны:

∠1 + ∠2 = ∠3 + ∠2.

В этом равенстве слева и справа есть по одинаковому слагаемому – ∠2. Равенство не нарушится, если это слагаемое в левой и в правой части опустить. Тогда мы получаем:

∠1 = ∠3.

naobumium.info

Угол. Виды углов - СПИШИ У АНТОШКИ

Перейти к контенту

Угол — это геометрическая фигура, которая состоит из двух лучей и вершины.

 Вершина угла — это точка, в которой два луча берут начало.Точка О - вершина угла AOD

Стороны угла — это лучи, которые образуют угол.

OA и  OD - это лучи  угла AOD

Для обозначения угла в тексте используется символ: знак угла ∠ AOB

Способы обозначения углов

Способ 1. Одной заглавной латинской буквой, указывающей его вершину. ∠ C = 90° или ∠ ОСпособ 2. Тремя заглавными латинскими буквами, которыми обозначены вершина и две точки , расположенные на сторонах угла.  Называть угол можно с любого края, но НЕ с вершины.

                                Угол в таком случае имеет два названия - ∠ AOD или ∠ DOA. Но вершина всегда должна быть 

                                 в     середине названия

Способ 3. Иногда углы обозначают цифрами. ∠ 1 или ∠ 2

Любой угол разделяет плоскость на две части. При этом если угол не развернутый, то одну часть плоскости называют внутренней областью угла, а другую – внешней областью угла.

Угол – это геометрическая фигура, которую составляют два несовпадающих луча с общим началом и соответствующая внутренняя область угла.

Единица измерения углов — градусы. Углы измеряют с помощью специального прибора — транспортира.

Для обозначения градусов в тексте используется символ: °  градус.

Один градус – это угол, равный одной сто восьмидесятой части развернутого угла. 90 градусов обозначаются так: 90°. 

Минута – это одна шестидесятая часть градуса.

Секунда – это одна шестидесятая часть минуты.

Вид углаРазмер в градусахЧертежОпределение
Прямой Равен 90°Угол равный 90°, называется прямым. 
ОстрыйМеньше 90°Угол называется острым, если его градусная мера которого больше 0°, но меньше 90°. 
ТупойБольше 90°Угол называется тупым, если его градусная мера которого больше 90°, но меньше 180°. 
РазвернутыйРавен 180°Угол равный 180°, называется развернутым. 
Смежные и вертикальные углыСмежные углы – это два угла, у которых одна сторона общая, а две другие образуют развернутый угол.На рисунке ∠ a 1Ob и ∠ a 2Ob смежные углы.

Теорема Сумма смежных углов равна 180° 

Доказательство.

Пусть ∠ a 1Ob и ∠ a 2Ob – смежные углы. Полупрямая b разбивает развернутый угол ∠ a 1 a 2 на два угла. Значит ∠ a 1Ob + ∠ a 2Ob = ∠ a 1 a 2 = 180° Т.е. сумма смежных углов равна 180° Теорема доказана.

Если угол острый, то смежный с ним угол тупой и наоборот.

Вертикальные углы – это два угла, у которых стороны одного угла являются продолжениями сторон другого.

На рисунке ∠ a 1Ob1 и ∠ a 2Ob2 - вертикальные углы

На рисунке ∠ a 2Ob1 и ∠ a 1Ob2 - вертикальные углы

Две пересекающиеся прямые образуют четыре пары смежных углов и две пары вертикальных углов.

Теорема.Вертикальные углы равны.Доказательство.

Пусть ∠ a 2Ob2 и ∠ a 1Ob1 – вертикальные углы. 

Угол ∠ a 2Ob1 является смежным ∠ a 2Ob2 и ∠ a 1Ob1 и дополняет их до 180°, по теореме о сумме смежных углов, следовательно ∠ a 2Ob2 и ∠ a 1Ob1 равны. Теорема доказана. 

spishy-u-antoshki.ru

Геометрическая фигура угол - определение угла, измерение углов, обозначения и примеры

Угол – основная геометрическая фигура, которую разберем на протяжение всей темы. Определения, способы задания, обозначения и измерения угла. Разберем принципы выделения углов на чертежах. Вся теория проиллюстрирована и имеет большое количество наглядных чертежей.

Yandex.RTB R-A-339285-1 Определение 1

Угол – простая важная фигура в геометрии. Угол напрямую зависит от определения луча, который в свою очередь состоит из базовых понятий точки, прямой и плоскости. Для досконального изучения необходимо углубиться по темам прямая на плоскости – необходимые сведения и плоскость – необходимые сведения.

Понятие угла начинается с понятий о точке, плоскости и прямой, изображенной на этой плоскости.

Определение 2

Дана прямая a на плоскости. На ней обозначим некоторую точку O. Прямая разделена точкой на две части, каждая из которых имеет название луч, а точка O – начало луча.

Иначе говоря, луч или полупрямая – это часть прямой, состоящая из точек заданной прямой, расположенных на одной стороне относительно начальной точки, то есть точки O.

Обозначение луча допустимо в двух вариациях: одной строчной или двумя прописными буквами латинского алфавита. При обозначении двумя буквами луч имеет название, состоящее из двух букв. Рассмотрим подробнее на чертеже.

Перейдем к понятию определения угла.

Определение 3

Угол – это фигура, расположенная в заданной плоскости, образованная двумя несовпадающими лучами, имеющими общее начало. Сторона угла является лучом, вершина – общее начало сторон.

Имеет место случай, когда стороны угла могут выступать в роли прямой линии.

Определение 4

Когда обе стороны угла расположены на одной прямой или его стороны служат как дополнительные полупрямые одной прямой, то такой угол называют развернутым.

На рисунке ниже изображен развернутый угол.

Точка на прямой – это и есть вершина угла. Чаще всего имеет место ее обозначение точкой O.

Угол в математике обозначается знаком «∠ ». Когда стороны угла обозначают малыми латинскими, то для правильного определения угла записываются подряд буквы соответственно сторонам. Если две стороны имеют обозначение k и h, то угол обозначается как ∠kh или ∠hk .

Когда идет обозначение большими буквами, то соответственно стороны угла имеют названия OA и OB. В таком случае угол имеет название из трех букв латинского алфавита, записанные подряд, в центре с вершиной - ∠AOB и ∠BOA . Существует обозначение в виде цифр, когда углы не имеют названий или буквенных обозначений. Ниже приведен рисунок, где разными способами обозначаются углы.

Угол делит плоскость на две части. В случае, если угол не развернутый, тогда одна часть плоскости имеет название внутренняя область угла, другая – внешняя область угла. Ниже приведено изображение, объясняющее, какие части плоскости внешние, а какие внутренние.

При разделении развернутым углом на плоскости любая из его частей считается внутренней областью развернутого угла.

Внутренняя область угла – элемент, служащий для второго определения угла.

Определение 5

Углом называют геометрическую фигуру, состоящая из двух несовпадающих лучей, имеющих общее начало и соответствующую внутреннюю область угла.

Данное определение является более строгим, чем предыдущее, так как имеет больше условий. Оба определения не желательно рассматривать отдельно, потому как угол – это геометрическая фигура, преобразованная при помощи двух лучей, выходящих из одной точки. Когда необходимо выполнять действия с углом, то под определением понимают наличие двух лучей с общим началом и внутренней областью.

Определение смежных и вертикальных углов

Определение 6

Два угла называют смежными, если имеется общая сторона, а две другие являются дополнительными полупрямыми или образуют развернутый угол.

На рисунке видно, что смежные углы дополняют друг друга, так как являются продолжением один другого.

Определение 7

Два угла называют вертикальными, если стороны одного являются дополнительными полупрямыми другого или являются продолжениями сторон другого. На рисунке ниже показано изображение вертикальных углов.

При пересечении прямых получается 4 пары смежных и 2 пары вертикальных углов. Ниже показано на рисунке.

Сравнение углов

Статья показывает определения равных и неравных углов. Разберем какой угол считается большим, какой меньшим и другие свойства угла. Две фигуры считаются равными, если при наложении они полностью совпадают. Такое же свойство применимо для сравнения углов.

Даны два угла. Необходимо прийти к выводу, равные эти углы или нет.

Известно, что имеет место наложение вершин двух углов и стороны первого угла с любой другой стороной второго. То есть при полном совпадении при наложении углов стороны заданных углов совместятся полностью, углы равные.

Может быть так, что при наложении стороны могут не совместиться, то углы неравные, меньший из которых состоит из другого, а больший имеет в своем составе полный другой угол. Ниже изображены неравные углы, не совмещенные при наложении.

Развернутые углы являются равными.

Измерение углов

Измерение углов начинается с измерения стороны измеряемого угла и его внутренней области, заполняя которую единичными углами, прикладывают друг к другу. Необходимо посчитать количество уложенных углов, они и предопределяют меру измеряемого угла.

Единица измерения угла может быть выражена любым измеряемым углом. Имеются общепринятые единицы измерения, которые применяют в науке и технике. Они специализируются на других названиях.

Чаще всего используют понятие градус.

Определение 8

Один градус называют углом, который имеет одну сто восьмидесятую часть развернутого угла.

Стандартное обозначение градуса идет при помощи «°», тогда один градус – 1° . Следовательно, развернутый угол состоит из 180 таких углов, состоящих из одного градуса. Все имеющиеся углы плотно уложены друг к другу и стороны предыдущего совмещены с последующим.

Известно, что количество положенных градусов в угле, это и есть та самая мера угла. Развернутый угол имеет 180 уложенных углов в своем составе. Ниже на рисунке приводятся примеры, где уложение угла идет в 30 раз, то есть одна шестая развернутого, и 90 раз, то есть половина.

Для точности определения измерения углов используются минуты и секунды. Их применяют, когда величина угла не является целым обозначением градуса. Такие части градуса позволяют выполнять более точные расчеты .

Определение 9

Минутой называют одну шестидесятую часть градуса.

Определение 10

Секундой называют одну шестидесятую часть минуты.

Градус содержит 3600 секунд. Минуты обозначают «'», а секунды «''». Имеет место обозначение:

1°=60'=3600'', 1'=(160)°, 1'=60'', 1''=(160)'=(13600)° ,

а обозначение угла 17 градусов 3 минут и 59 секунд имеет вид 17°3'59'' .

Определение 11

Градусная мера угла –это число, показывающее количество укладываний градуса в заданном угле.

Приведем пример обозначения градусной меры угла равного 17°3'59'' . Запись имеет еще один вид 17+360+593600=172393600.

Для точного измерения углов используют такой измерительный прибор, как транспортир. При обозначении угла ∠AOB и его градусной мере в 110 градусов применяют более удобную запись ∠AOB=110° , которая читается «Угол АОВ равен 110градусам».

В геометрии используется мера угла из интервала (0,180], а в тригонометрии произвольная градусная мера имеет название углов поворота. Значение углов всегда выражается действительным числом. Прямой угол – это угол, имеющий 90 градусов. Острый угол – угол, который меньше 90 градусов, а тупой – больше.

Острый угол измеряется в интервале (0,90), а тупой – (90,180). Ниже наглядно изображены три вида углов.

Любая градусная мера любого угла имеет одинаковое значение. Больший угол соответственно имеет большую градусную меру, чем меньший. Градусная мера одного угла – это сумма всех имеющихся градусных мер внутренних углов. Ниже приведен рисунок, где показан угол АОВ, состоящий из углов АОС, СОD и DОВ. Подробно это выглядит так:∠AOB=∠AOC+∠DOB=45°+30°+60°=135° .

Исходя из этого, можно сделать вывод, что сумма всех смежных углов равна 180 градусам, потому что они все и составляют развернутый угол.

Отсюда следует, что любые вертикальные углы равны. Если рассмотреть это на примере, мы получим, что угол АОВ и СОD – вертикальные (на чертеже), тогда пары углов АОВ и ВОС, СОD и ВОС считают смежными. В таком случает равенство∠AOB+∠BOC=180° вместе с ∠COD+∠BOC=180° считаются однозначно верными. Отсюда имеем, что ∠AOB=∠COD . Ниже приводится пример изображения и обозначения вертикальных улов.

Кроме градусов, минут и секунд используется еще одна единица измерения. Она называется радианом. Чаще всего ее можно встретить в тригонометрии при обозначении углов многоугольников. Что же называют радианом.

Определение 12

Углом в один радиан называют центральный угол, который имеет длину радиуса окружности равную длине дуги.

На рисунке радиан изображается в виде окружности, где имеется центр, обозначенный точкой , с двумя точками на окружности, соединенными и преобразованными в радиусы ОА и ОВ. По определению данный треугольник AOB является равносторонним, значит длина дуги AB равна длинам радиусов ОВ и ОА.

Обозначение угла принимается за «рад». То есть запись в 5 радиан сокращенно обозначается как 5 рад. Иногда можно встретить обозначение, имеющее название пи. Радианы не имеют зависимости от длины заданной окружности, так как фигуры имеют некое ограничение при помощи угла и его дугой с центром, находящимся в вершине заданного угла. Они считаются подобными.

Радианы имеют такой же смысл, как и градусы, только разница в их величине. Чтобы это определить, необходимо вычисленную длину дуги центрального угла поделить на длину ее радиуса.

На практике используют перевод градусов в радианы и радианы в градусы для более удобного решения задач. Указанная статья имеет информацию о связи градусной меры с радианной, где можно подробно изучить переводы из градусной в радианную и обратно.

Обозначение углов на чертеже

Для наглядного и удобного изображения дуг, углов используют чертежи. Не всегда можно правильно изобразить и отметить тот или иной угол, дугу или название. Равные углы имеют обозначение в виде одинакового количества дуг, а неравные в виде разного. На чертеже изображено правильное обозначение острых, равных и неравных углов.

Когда необходимо отметить более 3 углов, используются специальные обозначения дуг, например, волнистые или зубчатые. Это не имеет столь важное значение. Ниже приведен рисунок, где показано их обозначение.

Обозначение углов должны быть простыми, чтобы не мешали другим значениям. При решении задачи рекомендовано выделять только необходимые для решения углы, чтобы не загромождать весь чертеж. Это не помешает решению и доказательству, а также придаст эстетичный вид рисунку.

zaochnik.com

Классификация углов

Развёрнутый угол это прямая линия. Такой угол равен 180 ° На рисунке угол ABC является развёрнутым углом

Прямой угол равен половине развёрнутого угла. Он равен 90 ° На рисунке угол DEF это прямой угол.

Острый угол меньше, чем прямой угол. Величина такого угла меньше 90 ° На рисунке угол LMN является острым углом.

Тупой угол больше чем прямой угол, но меньше, чем развёрнутый, то есть величина тупого угла больше, чем 90 ° и меньше чем 180°. На рисунке угол XYZ является тупым углом.

Смежными углами называются углы, такие как a и d, или a и b или b и c или c и d Сумма смежных углов равна развёрнутому углу(180°), поэтому a = c и b = d.

Вертикальные углы это a и c или b и d. Вертикальные углы, образующие пару, равны т.e. a = c и b = d

Пусть две параллельные прямые пересекаются секущей. Углы m и q или n иr или o и s или p иt называются соответствующими. Они имеют равную величину.

www.math10.com

Виды углов

Углы – это такая же характеристика фигуры, как стороны, периметр или площадь. С помощью углов можно понять, какая фигуры перед нами и какой именно ее вид. Если это треугольник, то по углу визуально можно определить, прямоугольный ли это треугольник, тупоугольный или произвольный, а по общему углу можно доказать равенство или подобие фигур.

Что такое угол? Существует три определения угла. Рассмотрим каждое из них, выберем наиболее простое и понятное.

Угол – это геометрическая фигура, образованная двумя лучами, исходящими из одной точки. То есть это просто два луча. Это определение дается практически в каждом учебнике геометрии. Оно правильное, но прочитав его, не совсем понятно, откуда берется значение угла.

Угол – это плоскость, ограниченная двумя лучами, исходящими из одной точки. То есть, два луча “откусывают кусочек пространства”. Это и есть угол. Так проще представить фигуру, но опять не ясно, откуда берется значение угла. Это можно понять только из 3 определения.

Угол – это мера поворота луча, вокруг своего начала. Это сложно понять, но легко представить. Представьте часы. Вот на часах 12 часов дня, минутная и часовая стрелка находятся на одном уровне, тут минутная стрелка начинает двигаться. И каждый раз, время, а значит положение стрелок можно определить именно углом между часовой и минутной стрелкой. Углы могут быть разными, но если выделять угол в каждый момент времени дугой, то можно заметить, что дуга в конце концов превратится в круг.

Именно круг и является началом отчета для градуса. Дуга $$1\over360$$ части круга это градус. А по количеству градусов в угле можно выделить основные виды углов между прямыми: острые, прямые, тупые и полные углы.

Острый угол это угол, значение которого меньше 90 градусов. В произвольном параллелограмме всегда есть два острых и два тупых угла, тогда как в произвольном треугольнике все углы прямые. Если хоть один из углов треугольника прямой или тупой, то фигуру уже нельзя считать произвольной.

Рис. 1. Острый угол.

Прямой угол очень много значит в геометрии. Прямой угол в параллелограмме, означает, что перед вами квадрат или прямоугольник. Произвольный треугольник, если доказать, что в нем есть прямой угол, сразу же превращается в прямоугольный треугольник, для которого действует больший набор теорем и правил, нежели для произвольного.

Рис. 2. Прямой угол.

Тупой угол, это угол больше 90 градусов. Это значение очень широко используется в задачах по тригонометрии. Но и в геометрии очень часто можно встретить задачи на тупоугольный треугольник. Считается, что тупоугольный треугольник сложнее воспринимается чисто визуально, но на деле, стоит только привыкнуть и задачи эти уже не будут казаться такими страшными.

Рис. 3. Тупой угол.

Полный угол это угол в 360 градусов. То есть тот самый момент, когда минутная и часовая стрелка совпадает.

Тогда с одной стороны будет полный угол, а с другой угол в 0 градусов. Чисто теоретически и нулевой угол тоже существует, он означает, что стрелки или лучи друг от друга не отклонялись.

Мы узнали, что такое угол, определили виды углов, поговорили о том, какую роль каждый из видов играет в геометрии и привели примеры каждого из них.

Средняя оценка: 4.2. Всего получено оценок: 86.

Page 2

Образовака Математика

obrazovaka.ru

Угол. Виды углов. Видеоурок. Математика 4 Класс

Ранее мы были ознакомлены с понятием «луч». Луч – это часть прямой, ограниченная с одной стороны точкой. На рисунке можно увидеть луч с началом в точке  и луч с началом в точке  (рис. 1).

Рис. 1. Лучи

Фигура, образованная двумя лучами с одним и тем же началом, называется углом. Лучи, образующие угол, называются сторонами угла, а их общее начало – вершиной угла (рис. 2).

Рис. 2. Углы

Угол может быть назван одной заглавной латинской буквой по его вершине. На рис. 2 можно увидеть угол  и угол . Но углы можно обозначить и другим способом.

Угол многоугольника обозначают тремя заглавными буквами. Называть угол начинают с буквы, стоящей у одной стороны, затем называют букву у вершины, а заканчивают буквой у другой стороны. Например, в треугольнике , угол с вершиной  является угол  (рис. 3) или в обратном порядке – .

В треугольнике  угол с вершиной  – это угол  или .

Рис. 3. Углы в треугольнике

Необходимо помнить, что в середине названия угла должна стоять та буква, которой обозначена вершина угла.

Иногда угол обозначают малой буквой или цифрой, ставя их внутри угла (рис. 4). Между сторонами угла проводят для ясности дужку.

Рис. 4. Обозначение угла буквой или цифрой

Рис. 5. Виды углов

Существуют различные виды углов.

1. Если стороны угла лежат на одной прямой, то такой угол называют развернутым. На рис. 6 угол М – развернутый (уместно сравнение с развернутым веером).

Рис. 6. Развернутый угол

2. Прямым углом называют тот угол, который составляет половину развернутого угла (рис. 7). Например, прямой угол можно получить путем складывания бумаги (если лист сложить дважды).

Рис. 7. Прямой угол

Для удобства определения, прямой угол или нет, есть особый инструмент – прямоугольный треугольник, у которого один из углов – прямой (рис. 8).

Рис. 8. Прямоугольный треугольник и его применение

3. Непрямые углы делятся на тупые и острые.

Угол, который меньше прямого, – это острый угол (рис. 9).

Рис. 9. Острый угол Угол, который больше прямого, но меньше развернутого угла, – это тупой угол (рис. 10).

Рис. 10. Тупой угол

Найдите на чертеже прямые, тупые и острые углы (рис. 11).

Рис. 11. Иллюстрация к заданию

В нахождении решения нам поможет инструмент – прямоугольный треугольник, который будет приложен к каждой из вершин треугольника путем совмещения одной из сторон. Если он будет совпадать с углом, то этот угол прямой. Если угол будет меньше прямого угла инструмента, то этот угол острый. А если же угол больше прямого угла инструмента – то это тупой угол.

Прямые углы:  

Тупые углы:

Острые углы: , , ,

В построении 4 прямых углов с общей вершиной на нелинованной бумаге нам помогут циркуль и линейка.

Сначала необходимо провести прямую. Отложим на прямой произвольный отрезок . Проведем две окружности с центрами в точке  и  с радиусами, равными длине отрезка .

Обозначим точки пересечения окружностей  и . Проведем через точки  и  прямую. Точку пересечения прямых обозначим буквой .

Рис. 12. Построение 4 прямых углов с общей вершиной на нелинованной бумаге

С помощью прямоугольного треугольника можно проверить, что все 4 угла с вершиной в точке  – прямые. При построении прямых углов на нелинованной бумаге вместо окружностей можно проводить дуги, то есть части окружности. Причем дуги могут быть любого радиуса, но больше, чем половина длины отрезка .

На этом уроке мы познакомились с понятием угла и видами углов: развернутым углом, прямым углом, тупым углом и острым углом. Научились строить прямые углы на нелинованной бумаге с помощью циркуля и линейки.

Список литературы

  1. Петерсон Л.Г. Математика 4 класс. Учебник в 3 частях, М.: 2013. Часть 1 96с., часть 2 128с., часть 3 96с.
  2. Моро М.И., Бантова М.А., Бельтюкова Г.В., Волкова С.И., Степанова С.В. Учебник. – 8-е изд. – М.: Просвещение, 2011. – 112 с.: ил. – (Школа России). – ISBN 978–5–09–023769–7.
  3. Математика. 4 класс. Учебник в 3 ч. Демидова Т.Е., Козлова С.А., Тонких А.П. 2-е изд., испр. – М.: 2013.; Ч.1 – 96 с., Ч.2 – 96 с., Ч.3 – 96 с.

Домашнее задание

  1. Определите количество углов в квадрате. Ромбе.
  2. Может ли быть в прямоугольном треугольнике тупой угол?

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал Shkolo.ru (Источник).
  2. Интернет-портал Festival.1september.ru (Источник).
  3. Интернет-портал Math-prosto.ru (Источник).
Page 2

На этом уроке мы рассмотрим луч и числовой луч. Вначале мы вспомним понятия «прямая», «отрезок» и «луч», рассмотрим их отличия. Введем понятие числового луча, познакомимся с историей его возникновения и решим ряд примеров.

Рассмотрите первый рисунок (рис. 1) и скажите, в чем отличия луча от прямой и отрезка.

Рис. 1. Отрезок, луч и прямая

Решение: 1. Прямая может быть продолжена сколько угодно в обе стороны – бесконечная линия, которая не имеет концов или границ.

2. Отрезок – часть прямой, которая ограничена с двух сторон. Так, на рисунке 1 отрезок – это .

3. Часть прямой, ограниченной точкой с одной стороны, – луч. На чертеже (рис. 1) изображён луч с началом в точке . Луч может быть продолжен по прямой только в одну сторону.

Рассмотрим луч с началом в точке  (рис. 2). Отложим на нём равные отрезки – единичные отрезки. Единичные отрезки могут быть равны любому значению: одна клетка, один сантиметр, три сантиметра. Главное, чтобы каждый следующий единичный отрезок был равен предыдущему. Если мы пронумеруем эти отрезки цифрами, получим числовой луч.

Рис. 2. Числовой луч

С помощью числового луча можно изобразить любое число, потому что он бесконечен. Также очень легко сравнивать числа: чем правее точка от начала луча, тем с большим числом мы столкнулись.

Объясните с помощью числового луча: в какую сторону от точки, соответствующей числу 4, надо двигаться, чтобы найти все числа, которые больше 4, и в какую сторону надо двигаться, чтобы найти все числа, которые меньше 4 (рис. 3)?

Рис. 3. Числовой луч

Решение: 1. Чем правее точка от начала луча, тем большему числу она соответствует. Следовательно, чтобы найти все числа, которые больше 4, надо двигаться от точки 4 вправо.

2. Чтобы найти все числа, которые меньше 4, надо двигаться от этой точки влево.

Рассмотрите числовой луч и скажите, какими буквами обозначены точки на числовом луче (рис. 4), соответствующие числам: 0, 3, 5, 8.

Рис. 4. Числовой луч

Решение: 1.  (0),  (3),  (5),  (8).

Каким числам на числовом луче (рис. 4) соответствуют точки: , , ?

Решение: 1.  (1),  (4),  (7).

Давайте повторим основные характеристики, которые касаются числового луча (рис. 5).

 

Рис. 5. Свойства числового луча (Источник)

Числовой луч открыл древнегреческий математик и астроном Евдокс Книдский (410–355 гг. до н.э.) (рис. 6). Он известен как автор самых различных открытий. Евдокс Книдский составил первый каталог звёзд, описание звёздного неба, занимался врачеванием, философией и музыкой. Одно из его открытий – это числовой луч. В его честь названы кратеры на Луне и Марсе.

 

Рис. 6. Евдокс Книдский (Источник)

Числовой луч (рис. 2) – это луч, на котором точками обозначены натуральные числа – такие числа, которые возникают при счёте. Расстояние между точками равно единице измерения – единичному отрезку, который задаётся условно. Расстояние от 0 до точки – координата точки. Координата точки записывается в скобках.

Список литературы

  1. Математика. 4 класс. Учеб. для общеобразоват. учреждений. В 2 ч. Ч. 1 / [М.И. Моро, М.А. Бантова, Г.В. Бельтюкова и др.] – 8-е изд. – М.: Просвещение, 2011. – 112 с. : ил. – (Школа России).  Истомина Н.Б. Математика. 4 класс. – М.: Ассоциация ХХІ век.
  2. Петерсон Л.Г. Математика, 4 класс. – М.: Ювента.

Домашнее задание

  1. Математика. 4 класс. Учеб. для общеобразоват. учреждений. В 2 ч. Ч. 1 / [М.И. Моро, М.А. Бантова, Г.В. Бельтюкова и др.] – 8-е изд. – М.: Просвещение, 2011, ст. 32 № 150, 151.
  2. Сравните луч, отрезок и прямую.
  3. 3. Что такое числовой луч?
  4. * На числовом луче отметьте точки:  (2),  (5),  (8),  (10).

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал Shkolo.ru (Источник).
  2. Интернет-портал School.xvatit.com (Источник).
  3. Интернет-портал Open-lesson.net (Источник).

interneturok.ru

МАТВОКС ⋆ Виды углов. Неразвернутый угол ⋆ Энциклопедия математики

Перейти к содержанию

Виды углов. Неразвернутый угол

Вы здесь:

  1. ...
  2. Глава 2. Углы: виды углов…
Развернутый угол Неразвернутый угол

Неразвернутый угол – это любой угол, который не является развернутым.

Неразвернутый угол – это любой угол, не равный 180°.

Когда в задачах идет речь об углах, и отдельно не оговаривается то, какие именно углы рассматриваются, то подразумеваются неразвернутые углы.

Т.е. в задачах слово «неразвернутый» пропускают.

ВОС – неразвернутый угол

Прямой угол

Угол называют прямым, если он равен 90°.

∠MBC = 90°, значит ∠MBC – прямой угол.

Острый угол

Если угол меньше 90°, то его называют острым углом.

∠AOE = 30°, значит ∠ AOE – острый угол.

Тупой угол

Если угол больше 90°, но меньше 180°, то такой угол называют тупым углом.

∠KNL = 120°, значит ∠ KNL – тупой угол.

 Виды неразвернутых углов

Свойство 1

Если угол неразвернутый, то одна из частей называется внутренней, а другая внешней областью этого угла.

Внутренняя область угла выделена голубым.

Внешняя область угла выделена оранжевым

Если луч ОС исходит из вершины (О) неразвернутого угла и проходит внутри угла, то он делит этот угол АОВ на два угла – угол АОС и угол СОВ или ∠АОС и ∠СОВ.

Свойство 2

Go to Top

Этот сайт использует файлы cookies для более комфортной работы пользователя. Продолжая просмотр страниц сайта, вы соглашаетесь с использованием  файлов cookies. Если вам нужна дополнительная информация , пожалуйста, посетите страницу Политика Конфиденциальности Принять

Privacy & Cookies Policy

mathvox.ru


Смотрите также

Сайт о Бане - проект, посвященный строительству, эксплуатации и уходу за русской баней. Большой сборник статей, который может быть полезен любому любителю бани

Содержание, карта сайта.